Cellular Mechanisms of Central Nervous Modulation

1984 ◽  
Author(s):  
J. E. Treherne
Keyword(s):  
2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
N Weichert ◽  
E Kaltenborn ◽  
A Hector ◽  
M Woischnik ◽  
S Moslavac ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 396-407 ◽  
Author(s):  
Zhaojun Sheng ◽  
Siyuan Ge ◽  
Min Gao ◽  
Rongchao Jian ◽  
Xiaole Chen ◽  
...  

Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.) of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl groups. With embelin as the lead compound, more than one hundred derivatives have been reported. Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP) with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various cancers has been extensively studied. In addition, these compounds display a variety of other biological effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity. This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives. Their cellular mechanisms of action and prospects in the research and development of new drugs are also discussed.


2020 ◽  
Vol 20 ◽  
Author(s):  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
Soheila Montazersaheb ◽  
Yasin Bagheri

Background:: Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that, the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic altera-tions as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, be-yond available conventional therapy. Objective:: This review will focus on a better understanding of the epigenetic mechanisms in cancer development and pro-gression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and mi-croRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel well-suited approaches against ALL. Conclusion:: According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifica-tions, particularly DNA hyper-methylation, histone modification, and miRNA alteration.


Sign in / Sign up

Export Citation Format

Share Document