Analysis and Numerical Simulation of Strain Localization in Inelastic Solids Under Fully Coupled Thermomechanical and Poroplastic Conditions

2000 ◽  
Author(s):  
Francisco Armero
2014 ◽  
Vol 23 (8) ◽  
pp. 1150-1167 ◽  
Author(s):  
Yosr Ghozzi ◽  
Carl Labergere ◽  
Khemais Saanouni ◽  
Anthony Parrico

This work concerns the modelling and numerical simulation of specific thick sheet cutting process using advanced constitutive equations accounting for elasto-plasticity with mixed hardening fully coupled with isotropic ductile damage. First, the complex kinematics of the different tools is modelled with specific boundary conditions. Second, the fully and strongly coupled constitutive equations are summarized and the associated numerical aspects are shortly presented. An inverse material identification procedure is used to determine the convenient values of the material parameters. Finally, the double slitting process is numerically simulated and the influence of the main technological parameters studied focusing on the cutting forces.


2020 ◽  
Vol 78 (8) ◽  
pp. 378-391
Author(s):  
Evaldas Greiciunas ◽  
Federico Municchi ◽  
Nicodemo Di Pasquale ◽  
Matteo Icardi

2006 ◽  
Vol 524-525 ◽  
pp. 89-94
Author(s):  
Abel Cherouat ◽  
N. Belamri ◽  
Khemais Saanouni ◽  
P. Autesserre

This work deals with the numerical simulation of 3D guillotining of sheet metal using anisotropic elastoplastic model accounting for non-linear isotropic and kinematic hardening fully coupled with isotropic ductile damage and initial residual stresses. Both theoretical and numerical aspects are presented. A 3D finite element model is developed for the numerical simulation of the study state guillotining process. An explicit dynamic resolution strategy is used to solve the associated initial and boundary value problem. Results from the simulation of the guillotining process are given and the influence of residual stresses is investigated.


Sign in / Sign up

Export Citation Format

Share Document