Software to Convert Mechanical Desktop Solid Models into Facet Files for Input to Xpatch

1999 ◽  
Author(s):  
Roger Evans ◽  
John G. Bennett ◽  
Jack Jones
Keyword(s):  
2019 ◽  
Vol 56 (4) ◽  
pp. 801-811
Author(s):  
Mircea Dorin Vasilescu

This work are made for determine the possibility of generating the specific parts of a threaded assembly. If aspects of CAD generating specific elements was analysed over time in several works, the technological aspects of making components by printing processes 3D through optical polymerization process is less studied. Generating the threaded appeared as a necessity for the reconditioning technology or made components of the processing machines. To determine the technological aspects of 3D printing are arranged to achieve specific factors of the technological process, but also from the specific elements of a trapezoidal thread or spiral for translate granular material in supply process are determined experimentally. In the first part analyses the constructive generation process of a spiral element. In the second part are identified the specific aspects that can generation influence on the process of realization by 3D DLP printing of the two studied elements. The third part is affected to printing and determining the dimensions of the analysed components. We will determine the specific value that can influence the process of making them in rapport with printing process. The last part is affected by the conclusions. It can be noticed that both the orientation and the precision of generating solid models have a great influence on the made parts.


2014 ◽  
Vol 501-504 ◽  
pp. 1096-1103
Author(s):  
Hong Xiao Wu ◽  
Hao Zhe Xing ◽  
Zhi Fang Yan

The blast impact dynamic experiment of reinforced concrete rectangular plate with simply supported boundary conditions was performed using explosion pressure simulator. With 3-D FEM software LS-DYNA, the separate solid models of concrete and steel were established and 3-D FEM dynamic analysis of the experiment process was carried out. Compared calculation results to experiment results synthetically, the damage mechanism and failure characteristics of reinforced concrete plate under explosion impact loading condition were got and it is also verified that the H-J-C model can approximately simulate the concrete properties well under explosion impact loading condition.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


2019 ◽  
Vol 20 (01) ◽  
pp. 1950079
Author(s):  
MATTHEW JIAN-QIAO PENG ◽  
HONGWEN XU ◽  
HAI-YAN CHEN ◽  
XIANGYANG JU ◽  
YONG HU ◽  
...  

Little is known about why and how biomechanics govern the hypothesis that three-Lag-Screw (3LS) fixation is a preferred therapeutic technique. A series models of surgical internal-fixation for femoral neck fractures of Pauwells-II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Seventeen sets of CT scanned femora were imported onto Mimics extracting 3D models; these specimens were transferred to Geomagic Studio for a simulative osteotomy and kyrtograph; then, they underwent UG to fit simulative solid models; three sorts of internal fixators were expressed virtually by Pro-Engineer. Processed by Hypermesh, all compartments were assembled onto three systems actually as “Dynamic hip screw (DHS), 3LS and DHS+LS”. Eventually, numerical models of Finite Elemental Analysis (FEA) were exported to AnSys for solution. Three models for fixtures of Pauwells-II were established, validated and analyzed with the following findings: Femoral-shaft stress for [Formula: see text](3LS) is the least; Internal-fixator stress (MPa) for [Formula: see text]; Integral stress (MPa) for [Formula: see text]; displacement of femoral head (mm) for a[Formula: see text](DHS+LS) = 0.735; displacement of femoral shaft (mm) for [Formula: see text]; and displacement of fixators for [Formula: see text]. Mechanical comparisons for other femoral parks are insignificantly different, and these data can be abstracted as follows: the stress of 3LS-system was checked to be the least, and an interfragmentary displacement of DHS+LS assemblages was assessed to be the least”. A 3LS-system should be recommended to clinically optimize a Pauwells-II facture; if treated by this therapeutic fixation, breakage of fixators or secondary fracture is supposed to occur rarely. The strength of this study is that it was performed by a computer-aided simulation, allowing for design of a preoperative strategy that could provide acute correction and decrease procedure time, without harming to humans or animals.


2020 ◽  
Vol 4 (3) ◽  
pp. 46
Author(s):  
Harry Esmonde

An iterative approach is taken to develop a fractal topology that can describe the material structure of phase changing materials. Transfer functions and frequency response functions based on fractional calculus are used to describe this topology and then applied to model phase transformations in liquid/solid transitions in physical processes. Three types of transformation are tested experimentally, whipping of cream (rheopexy), solidification of gelatine and melting of ethyl vinyl acetate (EVA). A liquid-type model is used throughout the cream whipping process while liquid and solid models are required for gelatine and EVA to capture the yield characteristic of these materials.


1998 ◽  
Vol 4 (2) ◽  
pp. 162-177 ◽  
Author(s):  
G. Barequet ◽  
C.A. Duncan ◽  
S. Kumar
Keyword(s):  

1994 ◽  
Vol 244 (1-2) ◽  
pp. 819-823 ◽  
Author(s):  
Joël De Coninck ◽  
Sabine Limbourg ◽  
Charles M. Newman

2002 ◽  
Vol 124 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Tammy L. Haut Donahue ◽  
M. L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (i.e., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.


Sign in / Sign up

Export Citation Format

Share Document