The Disintegration (or not) of the Nonlinear Internal Tide

2010 ◽  
Author(s):  
Karl R. Helfrich
Keyword(s):  
2020 ◽  
Vol 20 (4) ◽  
pp. 1-6
Author(s):  
E. G. Morozov ◽  
I. Ansorge ◽  
D. V. Vinokurov
Keyword(s):  

2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


2012 ◽  
Vol 42 (2) ◽  
pp. 272-290 ◽  
Author(s):  
Dujuan Kang ◽  
Oliver Fringer

Abstract A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area is performed. The authors first derive a theoretical framework for analyzing internal tide energetics based on the complete form of the barotropic and baroclinic energy equations, which include the full nonlinear and nonhydrostatic energy flux contributions as well as an improved evaluation of the available potential energy. This approach is implemented in the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS). Results from three-dimensional, high-resolution SUNTANS simulations are analyzed to estimate the tidal energy partitioning among generation, radiation, and dissipation. A 200 km × 230 km domain including all typical topographic features in this region is used to represent the Monterey Bay area. Of the 152-MW energy lost from the barotropic tide, approximately 133 MW (88%) is converted into baroclinic energy through internal tide generation, and 42% (56 MW) of this baroclinic energy radiates away into the open ocean. The tidal energy partitioning depends greatly on the topographic features. The Davidson Seamount is most efficient at baroclinic energy generation and radiation, whereas the Monterey Submarine Canyon acts as an energy sink. Energy flux contributions from nonlinear and nonhydrostatic effects are also examined. In the Monterey Bay area, the nonlinear and nonhydrostatic contributions are quite small. Moreover, the authors investigate the character of internal tide generation and find that in the Monterey Bay area the generated baroclinic tides are mainly linear and in the form of internal tidal beams. Comparison of the modeled tidal conversion to previous theoretical estimates shows that they are consistent with one another.


2011 ◽  
Vol 38 (23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Mark Inall ◽  
Dmitry Aleynik ◽  
Tim Boyd ◽  
Matthew Palmer ◽  
Jonathan Sharples
Keyword(s):  

2021 ◽  
Author(s):  
Zoé Caspar-Cohen ◽  
Aurélien Ponte ◽  
Noé Lahaye ◽  
Xavier Carton ◽  
Xiaolong Yu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document