Spatial Distributions of 3p54s States of Argon Atoms in RF Magnetron Sputtering Plasma with a Collisional-Radiative Model

2021 ◽  
Vol 13 (5) ◽  
pp. 05007-1-05007-9
Author(s):  
M. Azzaoui ◽  
◽  
F. Khelfaoui ◽  
Z. Ballah ◽  
◽  
...  
1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


2018 ◽  
Vol 10 (3) ◽  
pp. 03005-1-03005-6 ◽  
Author(s):  
Rupali Kulkarni ◽  
◽  
Amit Pawbake ◽  
Ravindra Waykar ◽  
Ashok Jadhawar ◽  
...  

Author(s):  
Ihab Nabeel Safi ◽  
Basima Mohammed Ali Hussein ◽  
Hikmat J. Aljudy ◽  
Mustafa S. Tukmachi

Abstract Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates: discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.


2021 ◽  
Vol 129 (24) ◽  
pp. 245303
Author(s):  
Fan Xu ◽  
Yujiao Li ◽  
Beilei Yuan ◽  
Yongzheng Zhang ◽  
Haoming Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document