scholarly journals Roles of Auxin and Ethylene in Adventitious Root Formation by a Flood-resistant Tomato Genotype

HortScience ◽  
1991 ◽  
Vol 26 (1) ◽  
pp. 57-58 ◽  
Author(s):  
Steven T. McNamara ◽  
Cary A. Mitchell

The relative contributions of auxin and ethylene (C2H4) in stimulating the initiation of adventitious root primordia (ARP) and their subsequent development into adventitious roots (ARs) by flooded tomato (Lycopersicon esculentum Mill. PI 406966) seedlings were evaluated using TIBA and STS. Flooded plants treated with STS (F + STS) produced ≈ 40% as many emerged ARs as plants that were flooded only (F). Only 7% of the ARP initiated by F + STS plants developed enough to emerge through the epidermis by 120 hours of treatment compared with 95% emerged for F plants. A band of TIBA applied below the lowest leaves of flooded plants (F + TIBA) virtually eliminated AR formation. Plants with two or four leaves below the TIBA band produced 16- and 35-fold more ARs, respectively, than those with no leaves below the TIBA band. Relative to nonflooded (NF) plants, F + STS plants exhibited a nearly 40-fold increase in C2H4 evolution, while F and F + TIBA plants exhibited about a 5-fold increase in C2H4 production. These results suggest that auxin accumulation at or above the floodline is essential for ARP initiation and that auxin action is not mediated through C2H4. Ethylene may be required for elongation of flood-induced ARP leading to their emergence as ARs. Chemical names used: 2,3.5 -triiodobenzoic acid (TIBA): silver thiosulphate (STS).

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 634b-634
Author(s):  
Rolston St. Hilaire ◽  
Carlos A. Fierro Berwart

Mussaendas (Mussaenda spp.) are ornamental shrubs, and some cultivars are difficult to root. This study was conducted to explore how adventitious roots initiate and develop in the cultivar Rosea, and to determine if anatomical events are associated with difficulty in rooting stem cuttings. Stem cuttings were treated with 5, 10, 15 mm 1H-indole-3-butyric acid (IBA), or distilled water, and sampled every 2 days over 26 days to observe adventitious root formation and development. For analysis by light microscopy, the basal 1 cm of cuttings was embedded in wax and stained with safranin-fast green. Adventitious roots initiated from phloem parenchyma cells and from basal callus in nontreated cuttings. Cuttings treated with 15 mm IBA had a mean of 18 root primordia per basal 1 cm of cutting after 10 days. Root primordia were not observed in non-treated cuttings at 10 days. Root primordia that developed in non-treated cuttings lacked clear vascular connections. These results suggest that non-treated cuttings are difficult to root because few primordia are produced.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 1023-1025 ◽  
Author(s):  
Rolston St. Hilaire ◽  
Carlos A. Fierro Berwart ◽  
Carlos A. Pérez-Muñoz

Mussaendas (Mussaenda spp.) are ornamental shrubs, and some cultivars are difficult to root. This study was conducted to explore how adventitious roots initiate and develop in the cultivar Rosea and to determine if anatomical events are associated with difficulty in rooting stem cuttings. Stem cuttings were treated with 5, 10, 15 mmol IBA, or distilled water, and sampled every 2 days over 26 days to observe adventitious root formation and development. Adventitious roots initiated from phloem parenchyma cells. Cuttings treated with 15 mmol IBA had a mean of 18 root primordia per basal 1 cm of cutting after 10 days. Primordia were absent in nontreated cuttings at 10 days. These results suggest that nontreated cuttings are difficult to root because few primordia are produced. Chemical name used: 1H-indole-3-butyric acid (IBA).


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1463-1467 ◽  
Author(s):  
Benjamin E. Deloso ◽  
Anders J. Lindström ◽  
Frank A. Camacho ◽  
Thomas E. Marler

The influences of indole-3-butyric acid (IBA) concentrations of 0–30 mg·g−1 on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings were determined. Root formation success for both species was greater than 95%. The IBA concentrations did not influence the speed of root development for Z. furfuracea, but the Z. integrifolia cuttings that received IBA concentration of 3 mg·g−1 generated adventitious roots more slowly than the cuttings in the control group. The ending dry weights of the stems, leaves, and roots were not influenced by IBA concentration for either species. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species is successful without horticultural application of IBA. Additional IBA studies are needed on the other 300+ cycad species, especially those that are in a threatened category.


OENO One ◽  
2002 ◽  
Vol 36 (2) ◽  
pp. 97
Author(s):  
Laurence Geny ◽  
R. Dalmasso ◽  
Michel Broquedis

<p style="text-align: justify;">The effects of polyamines were examined for growth and polyamine contents in cultings, callus and primary adventitious roots of <em>Vitis vinifera</em> L. Variations in free, conjugated and wall-bound polyamines in cuttings were observed during rhizogenesis. The main polyamines in cuttings were conjugated polyamines while in callus and primary adventitious roots they were free polyamines. Exogenous polyamine addition did not modify the total number of roots per cutting but increased the mean size and number of long roots. Moreover, exogenous polyamines increased polyamine levels in callus and roots, particurlarly wall-bound and conjugated polyamines. The involvement of these classes of polyamines in morphogenic processes is discussed.</p>


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 240 ◽  
Author(s):  
Gonin ◽  
Bergougnoux ◽  
Nguyen ◽  
Gantet ◽  
Champion

The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.


2016 ◽  
Vol 43 (3) ◽  
pp. 244 ◽  
Author(s):  
Tianshu Chen ◽  
Fang Yuan ◽  
Jie Song ◽  
Baoshan Wang

The interactions of NO and other signalling molecules contribute to adventitious root formation in many plant species. To our knowledge, the role of NO in the adventitious root formation of plants subjected to waterlogging are as yet unknown. Populations of Suaeda salsa L., a C3 euhalophytic plant, from inland saline sites develop several adventitious roots in response to waterlogging. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1–1-oxyl-3-oxide (cPTIO) were applied to S. salsa seedlings to examine the effects of NO on flooding tolerance and its possible mechanism. SNP alleviated growth inhibition and increased adventitious root formation, endogenous NO levels and adventitious root cell integrity in S. salsa subjected to waterlogging. These SNP-mediated effects were prevented by the extra application of cPTIO. SNP treatment decreased nitrate reductase activity but increased nitric oxide synthase (NOS) activity in adventitious roots. These results suggest that in S. salsa, NO participates in waterlogging tolerance by enhancing adventitious root formation and that NO generation is associated with the NOS-associated pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jyoti Devi ◽  
Ekjot Kaur ◽  
Mohit Kumar Swarnkar ◽  
Vishal Acharya ◽  
Shashi Bhushan

Abstract Background Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. Results A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. Conclusion The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.


1967 ◽  
Vol 45 (10) ◽  
pp. 1883-1886 ◽  
Author(s):  
Ronald M. Girouard

Adventitious root formation was studied microscopically in stem cuttings of a difficult-to-root plant, the mature growth phase of Hedera helix, English ivy. Roots were found initiating at the end of 2–4 weeks in phloem ray parenchyma of internodes with and without woundwood and in callus near the basal end of cuttings; roots emerged at the end of 3–5 weeks. The fibro-bundle caps were thicker than those found in juvenile stems, but they did not hamper the development of adventitious roots.


1986 ◽  
Vol 64 (1) ◽  
pp. 242-246 ◽  
Author(s):  
Jacques Vasseur ◽  
René Lefebvre ◽  
Enoch Backoula

On Cichorium intybus root explants of different size, it is possible to demonstrate the existence of a relation between the volume/surface ratio and adventitious root formation capacities. With a volume/surface ratio equal to one, the highest number of adventitious roots and percentage of explants able to produce roots have been observed. When this ratio deviates from unity, adventitious root formation declines. Cold storage of chicory roots causes breakdown of fructosans and accumulation of sucrose, glucose, and fructose. At the same time, adventitious root formation on explants cultured in vitro decreases. Inclusion of glucose in culture media increases adventitious root production whatever the duration of chicory root cold storage may have been. Results are discussed and the hypothesis of a regulation of adventitious roots by sucrose and reducing sugars is advanced.


Sign in / Sign up

Export Citation Format

Share Document