scholarly journals Preplant Cover Crops Affect Weed and Vine Growth in First-year Vineyards

HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 1040-1043 ◽  
Author(s):  
Bruce P. Bordelon ◽  
Stephen C. Weller

Use of in-row cover crops for weed management in first-year vineyards was investigated in two studies. In the first study, rye (Secale cereal L. 'Wheeler') was fall-planted, overwintered, then managed by three methods before vine planting. Rye was either herbicide-desiccated with glyphosate and left on the surface as a mulch, mowed, or incorporated into the soil (cultivated). Weed density and growth of grapevines (Vitis spp.) were evaluated. Herbicide desiccation was superior to the other methods for weed suppression, with weed densities 3 to 8 times lower than for mowed or cultivated plots. Vine growth was similar among treatments, but the trend was for more shoot growth with lower weed density. In a second study, four cover crops, rye, wheat (Triticum aestivum L. 'Cardinal'), oats (Avena sativa L. 'Ogle'), and hairy vetch (Vicia villosa Roth), were compared. Wheat and rye were fall- and spring-planted, and oats and vetch were spring-planted, then desiccated with herbicides (glyphosate or sethoxydim) after vine planting and compared to weed-free and weedy control plots for weed suppression and grapevine growth. Cover crops provided 27% to 95% reduction in weed biomass compared to weedy control plots. Total vine dry mass was highest in weed-free control plots, was reduced 54% to 77% in the cover crop plots, and was reduced 81% in the weedy control. Fall-planted wheat and rye and spring-planted rye plots produced the highest vine dry mass among cover crop treatments. Spring-planted rye provided the best combination of weed suppression and vine growth. Chemical names used: N-(phosphonomethyl) glycine (glyphosate isopropylamine salt); 2-[l-(ethoxyimino)butyl]5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one (sethoxydim).

HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1163-1166 ◽  
Author(s):  
John R. Teasdale ◽  
Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).


2009 ◽  
Vol 23 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio ◽  
Emine Kaya ◽  
Dogan Isık

Organic vegetable producers have limited options for managing weeds. They cite weed management as their number one research priority. Studies were conducted in 2004 and 2005 at the Black Sea Agricultural Research Institute, Samsun, Turkey, to determine the weed suppressive effects of summer cover crops in organic kale production. Treatments consisted of grain sorghum, sudangrass, hairy vetch, grain amaranth, pea, and fallow. Weed density and total weed dry biomass were assessed before and at 14, 28, and 56 d after incorporation (DAI) of the cover crops. Kale was transplanted 14 DAI and hand weeded once after last weed evaluation (56 DAI). All cover crops produced at least 1 ton/ha (t/ha) biomass; grain sorghum produced more dry matter than all other cover crops in both years. After incorporation of the cover crops, hairy vetch and sorghum treatments showed fewer species, lower weed density, and total weed dry biomass compared with other treatments. Cover crops suppressed emergence of common purslane, common lambsquarters, redroot pigweed, European heliotrope, field pennycress, annual sowthistle, black nightshade, shepherd's-purse, wild mustard, sun spurge, Persian speedwell, annual mercury, and jimsonweed up to 56 DAI. Total kale yield in hairy vetch treatments was more than double that of the no cover crop, and was significantly higher than yield from the other cover crop treatments. These results indicate that hairy vetch, grain sorghum, and sudangrass have ability to suppress early-season weeds in organic kale production.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 820A-820
Author(s):  
Charlotte Herman ◽  
David Larson ◽  
Emily Hoover

The goal of our program is to learn how to effectively establish first-year strawberry plantings without using herbicides. Before strawberry transplanting, four treatments were established: winter wheat, a dwarf Brassica sp., napropamide (2.24 kg·h–1) plus hand hoeing and rototilling, and no weed management. `Honeyoye' transplants were set into plots measuring 6.1 × 7.32 m on 21 May 1993 and 10 May 1994. Weekly data was taken on the percentage of soil area covered with plant material, height, and stage of development of plants, and weeds present. Weed transects and plant dry weights were done periodically during the growing seasons. The most promising cover crop treatment was the dwarf Brassica sp. for early season weed suppression because of rapid germination and short stature. Winter wheat was very competitive with the strawberry plants. The herbicide treatment had the largest inputs; however, it did produce the largest strawberry plants at the end of the season.


HortScience ◽  
2005 ◽  
Vol 40 (6) ◽  
pp. 1716-1722 ◽  
Author(s):  
Steven Vanek ◽  
H.C. Wien ◽  
Anu Rangarajan

Growing a main vegetable crop for harvest and a cover crop for residue return to soil in the same growing season is a promising strategy to sustain soil quality in vegetable rotations. Our research evaluated cover crop strips interseeded between pumpkins (Cucurbita pepo L.) as a way to implement such a strategy. Cover crop types were lana vetch (Vicia villosa ssp. dasycarpa Ten.) and a lana vetch–winter rye (Secale cereale L.) mix, interseeded before, at the same time, or after pumpkins. The competitive impact of different cover crop strips was assessed using pumpkin yield, cover strip biomass, crop nitrogen status, soil nitrate status, and soil water potential. Cover strips were also assessed for competitiveness with native weeds. Seeding date affected the competitiveness of cover strips with pumpkins, while cover type did not. Cover crops seeded before pumpkins or at the same time reduced pumpkin yield in proportion to biomass produced by the cover strips early in pumpkin growth. Cover strips seeded after pumpkins did not reduce yield. Tilling in a before-seeded cover strip at 30 days after pumpkin seeding gave higher pumpkin yield than before-seeded cover strips that were not tilled. At three of four sites, after-seeded cover strips had the lowest percent weed biomass in strips, and at two sites with moderate weed pressure vetch–rye strips were more effective than vetch alone in suppressing weeds. Cover strips seeded before or at the same time as pumpkins reduced pumpkin yield by taking up resources that were otherwise available to pumpkins. At a high-rainfall site, competition for soil nitrate by cover crop strips was the dominant factor in reducing pumpkin yield. At a low-rainfall site, the dominant factor was competition for water. Because of effective weed suppression and lack of pumpkin yield reduction, interseeding vetch–rye strips after pumpkins was a promising practice, as was tilling in preexistent cover strips at an interval <30 days after pumpkin seeding. Good previous weed management and rye–vetch mixes at high seeding rates are necessary to allow interseeded cover strips to outcompete weeds.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 326-334 ◽  
Author(s):  
Kevin S. Charles ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke ◽  
Kenneth L. Poff ◽  
Mary K. Hausbeck

Field studies were carried out in Laingsburg, MI, from 2002 to 2004 on Houghton muck soil to assess the impacts of cover crops and soil fertility regimes on weed populations and celery yield. The cover crops were oilseed radish, cereal rye, hairy vetch, and a bare ground control. The fertility rates were full (180, 90, and 450 kg ha−1nitrogen [N], phosphorus pentoxide [P2O5], and potassium oxide [K2O], respectively), half (90, 45, and 225 kg ha−1N, P2O5, and K2O, respectively), and low (90 kg ha−1N). Each cover crop treatment was combined with the low or half rate of fertilizer. An additional treatment with bare ground plus the full rate of fertilizer was added as standard practice. Treatments were maintained in the same location for the duration of the study. Major weed species were common chickweed, prostrate pigweed, shepherd's-purse, common purslane, and yellow nutsedge. Each year, oilseed radish consistently produced the greatest biomass and provided over 98% early season weed biomass suppression. Hairy vetch and cereal rye provided about 70% weed suppression in early spring. Soil fertility level affected weed populations during the 2004 growing season. In 2004, weed biomass in treatments without cover crops or with vetch increased when greater amounts of fertilizer were applied. Within individual fertility levels, higher celery yields were recorded in the oilseed radish plots. For example, in the low fertility rate, celery yield was 34.8, 29.2, 23.9, and 24.4 ton ha−1in the oilseed radish, cereal rye, hairy vetch, and control plots, respectively in 2003. Overall, the results of this experiment indicate that when included in a system where hoeing and hand-weeding are the only weed control methods, cover crops can successfully improve weed management and celery yield on muck soils, allowing reduced fertilizer inputs.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


1993 ◽  
Vol 7 (4) ◽  
pp. 879-883 ◽  
Author(s):  
John R. Teasdale

Weed management treatments with various degrees of herbicide inputs were applied with or without a hairy vetch cover crop to no-tillage corn in four field experiments at Beltsville, MD. A hairy vetch living mulch in the no-treatment control or a dead mulch in the mowed treatment improved weed control during the first 6 wk of the season but weed control deteriorated in these treatments thereafter. Competition from weeds and/or uncontrolled vetch in these treatments without herbicides reduced corn yield in three of four years by an average of 46% compared with a standard PRE herbicide treatment of 0.6 kg ai/ha of paraquat plus 1.1 kg ai/ha of atrazine plus 2.2 kg ai/ha of metolachlor. Reducing atrazine and metolachlor to one-fourth the rate of the standard treatment in the absence of cover crop reduced weed control in three of four years and corn yield in two of four years compared with the standard treatment. Hairy vetch had little influence on weed control or corn yield with any herbicide treatments.


2019 ◽  
Vol 34 (1) ◽  
pp. 48-54
Author(s):  
Kara B. Pittman ◽  
Charles W. Cahoon ◽  
Kevin W. Bamber ◽  
Lucas S. Rector ◽  
Michael L. Flessner

AbstractCover crops provide a number of agronomic benefits, including weed suppression, which is important as cases of herbicide resistance continue to rise. To effectively suppress weeds, high cover crop biomass is needed, which necessitates later termination timing. Cover crop termination is important to mitigate potential planting issues and prevent surviving cover crop competition with cash crops. Field studies were conducted in Virginia to determine the most effective herbicide options alone or combined with glyphosate or paraquat to terminate a range of cover crop species. Results revealed that grass cover crop species were controlled (94% to 98%) by glyphosate alone 4 wk after application (WAA). Overall, legume species varied in response to the single active-ingredient treatments, and control increased with the addition of glyphosate or paraquat. Mixes with glyphosate provided better control of crimson clover and hairy vetch by 7% to 8% compared with mixes containing paraquat 4 WAA. Mix partner did not influence control of Austrian winter pea. No treatment adequately controlled rapeseed in this study, with a maximum of 58% control observed with single active-ingredient treatments and 62% control with mixes. Height reduction for all cover crop species supports visible rating data. Rapeseed should be terminated when smaller, which could negate weed suppressive benefits from this cover crop species. Growers should consider herbicide selection and termination timing in their cover crop plan to ensure effective termination.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 380-389 ◽  
Author(s):  
S. B. Mirsky ◽  
W. S. Curran ◽  
D. M. Mortenseny ◽  
M. R. Ryany ◽  
D. L. Shumway

Integrated weed management tactics are necessary to develop cropping systems that enhance soil quality using conservation tillage and reduced herbicide or organic weed management. In this study, we varied planting and termination date of two cereal rye cultivars (‘Aroostook’ and ‘Wheeler’) and a rye/hairy vetch mixture to evaluate cover-crop biomass production and subsequent weed suppression in no-till planted soybean. Cover crops were killed with a burn-down herbicide and roller-crimper and the weed-suppressive effects of the remaining mulch were studied. Cover-crop biomass increased approximately 2,000 kg ha−1from latest to earliest fall planting dates (August 25–October 15) and for each 10-d incremental delay in spring termination date (May 1–June 1). Biomass accumulation for cereal rye was best estimated using a thermal-based model that separated the effects of fall and spring heat units. Cultivars differed in their total biomass accumulation; however, once established, their growth rates were similar, suggesting the difference was mainly due to the earlier emergence of Aroostook rye. The earlier emergence of Aroostook rye may have explained its greater weed suppression than Wheeler, whereas the rye/hairy vetch mixture was intermediate between the two rye cultivars. Delaying cover-crop termination reduced weed density, especially for early- and late-emerging summer annual weeds in 2006. Yellow nutsedge was not influenced by cover-crop type or the timing of cover-crop management. We found that the degree of synchrony between weed species emergence and accumulated cover-crop biomass played an important role in defining the extent of weed suppression.


Sign in / Sign up

Export Citation Format

Share Document