scholarly journals Storage and Handling Effects on a CO2-related Internal Browning Disorder of `Braeburn' Apples

HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 719-722 ◽  
Author(s):  
H. John Elgar ◽  
Douglas M. Burmeister ◽  
Christopher B. Watkins

`Braeburn' apple (Malus ×domestica Borkh.) fruit can be susceptible to the development of an internal disorder called “`Braeburn' browning disorder” (BBD). Factors associated with development of this disorder were investigated. Susceptibility to injury was greater in fruit exposed to 2 or 5 kPa CO2 than to 0 kPa CO2 during storage. Susceptibility also increased with decreasing O2 partial pressure in the range of 5 to 1 kPa in the storage atmosphere. However, fruit stored in 1 kPa O2 remained firmer than those stored at higher partial pressures, regardless of CO2 level. BBD appeared to develop during the first 2 weeks of storage, and delays in air at 0 °C prior to controlled-atmosphere (CA) storage decreased incidence and severity of the disorder. The incidence of BBD was also reduced when the time to establish CA conditions was prolonged. We recommend that `Braeburn' apples be stored under CA conditions of ≤1.0 kPa CO2 and 3.0 kPa O2. Delayed application of CA for 2 weeks after fruit enter the coldstorage may also reduce development of BBD.

HortScience ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Carolina Contreras ◽  
Nihad Alsmairat ◽  
Randy Beaudry

‘Honeycrisp’ apples were found to be sensitive to injury from O2 and CO2 partial pressures typical of those in controlled-atmosphere (CA) storage. A preliminary study was conducted in 2008 to investigate the effect of the following O2/CO2 partial pressure (kPa) combinations: 1/0, 3/0, 1/3, 3/3, 21/3, 21/0 (air), and 21/0 with 1-methylcyclopropene (1-MCP; 1 μL·L−1) on CA-related injuries of 'Honeycrisp' during storage for 6 months at 3 °C. ‘Honeycrisp’ apples were found to be sensitive to an injury comprised of irregular-edged brown lesions in the cortex occasionally accompanied by the formation of lens-shaped voids. The symptoms are similar to CA-related injuries described for other apple cultivars and often characterized as a “CO2 injury.” Injury severity increased as O2 declined and as CO2 increased and was evident within the first month of storage. During 2009, 2010, and 2011, a study was conducted to evaluate options for avoiding injury during CA storage for this cultivar. Fruit were conditioned at 3, 10, and 20 °C for 5 days and then exposed to the following O2/CO2 partial pressure combinations: 3/0, 3/3, 21/0 (regular air); 3/3 with diphenylamine (DPA) drench (1 g·L−1); and 21/0 with 1-MCP (1 μL·L−1). Injury severity declined as the temperature of the prestorage conditioning period increased; holding fruit for 5 days at 20 °C almost completely eliminated the disorder. The antioxidant DPA also provided nearly complete control of CA injury. 1-MCP, although not studied in conjunction with a modified atmosphere, was found to cause no injury in air storage and may provide an alternative to CA storage and avoid the risk of CA injury for ’Honeycrisp’. The relationship between disorder development and growing degree-days, rainfall, and maturity indexes was studied. Ethylene was the only factor with a significant linkage to the development of CA injury (R2 = 0.35; P = 0.0043). Suggestions for handling of ‘Honeycrisp’ for extended storage are presented.


2016 ◽  
Vol 121 (4) ◽  
pp. 953-964 ◽  
Author(s):  
J. J. Freiberger ◽  
B. J. Derrick ◽  
M. J. Natoli ◽  
I. Akushevich ◽  
E. A. Schinazi ◽  
...  

Diving narcosis results from the complex interaction of gases, activities, and environmental conditions. We hypothesized that these interactions could be separated into their component parts. Where previous studies have tested single cognitive tasks sequentially, we varied inspired partial pressures of CO2, N2, and O2 in immersed, exercising subjects while assessing multitasking performance with the Multi-Attribute Task Battery II (MATB-II) flight simulator. Cognitive performance was tested under 20 conditions of gas partial pressure and exercise in 42 male subjects meeting U.S. Navy age and fitness profiles. Inspired nitrogen (N2) and oxygen (O2) partial pressures were 0, 4.5, and 5.6 ATA and 0.21, 1.0, and 1.22 ATA, respectively, at rest and during 100-W immersed exercise with and without 0.075-ATA CO2. Linear regression modeled the association of gas partial pressure with task performance while controlling for exercise, hypercapnic ventilatory response, dive training, video game frequency, and age. Subjects served as their own controls. Impairment of memory, attention, and planning, but not motor tasks, was associated with N2 partial pressures >4.5 ATA. Sea level O2 at 0.925 ATA partially rescued motor and memory reaction time impaired by 0.075-ATA CO2; however, at hyperbaric pressures an unexpectedly strong interaction between CO2, N2, and exercise caused incapacitating narcosis with amnesia, which was augmented by O2. Perception of narcosis was not correlated with actual scores. The relative contributions of factors associated with diving narcosis will be useful to predict the effects of gas mixtures and exercise conditions on the cognitive performance of divers. The O2 effects are consistent with O2 narcosis or enhanced O2 toxicity.


1999 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
C.L. Chu

Our study found that storage temperature, storage atmosphere and growing region interactively affect the probability of internal browning disorder in `McIntosh' apples (Malus domestica Borkh.). Higher incidence of internal browning occurred in apples stored for 6 months at 1 °C (34 °F) in controlled atmosphere (CA) with 2.5% O2 + 1.5% CO2 or in CA with 1.0% O2 + 0.5% CO2 than apples stored at 1 °C in air or stored at 3 °C (37 °F) in air or CA conditions. The magnitude of the incidence of internal browning varied among apples harvested from different growing regions. Apples from London, Ontario, Canada were less tolerant to these two storage conditions and therefore greater number of fruit developed internal browning than apples from other regions. In addition, apples from the London growing region and stored at 1 °C in CA with 1.0% O2 + 0.5% CO2 had greater probability of internal browning than apples stored at 1 °C in CA with 2.5% O2 + 1.5% CO2. However, there was no difference between these two CA storage conditions in causing internal browning among apples harvested from other three growing regions. Few apples showed internal browning when they were stored at 3 °C, no matter of what storage atmosphere was used. Therefore, internal browning disorder can be avoided or significantly reduced by storing apples at 3 instead of 1 °C, in these two CA conditions. Internal browning disorder will not be a risk if apples are stored in air at 1 or 3 °C.


2014 ◽  
Vol 789 ◽  
pp. 466-470
Author(s):  
Qing Hao Shi ◽  
Bing Ying Wang ◽  
Bin Zhao

The corrosion mechanism of organic silicon modified polyurea composite coating under different CO2 partial pressures was studied using high-temperature autoclave, combined with scanning electron microscopy (SEM), adhesion tests and electrochemical impedance spectroscopy (EIS) technology. The experimental results showed that: there was no corrosion product formed on the surface of coating sample after high-temperature high-pressure corrosion test, and with the increasing of CO2 partial pressure, the coating adhesion and impedance values decline increases. Moreover CO2 partial pressure increases accelerated the failure process of polyurea composite coating system.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


1998 ◽  
Vol 13 (12) ◽  
pp. 3580-3586 ◽  
Author(s):  
A. L. Crossley ◽  
J. L. MacManus-Driscoll

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.


1985 ◽  
Vol 58 (4) ◽  
pp. 1143-1147 ◽  
Author(s):  
F. L. Powell ◽  
F. A. Lopez ◽  
P. D. Wagner

We have detected acetone in several brands of heparin. If uncorrected, this leads to errors in measuring acetone in blood collected in heparinized syringes, as in the multiple inert gas elimination technique for measuring ventilation-perfusion ratio (VA/Q) distributions. Error for acetone retention [R = arterial partial pressure-to-mixed venous partial pressure (P-V) ratio] is usually small, because R is normally near 1.0, and the error is similar in arterial and mixed venous samples. However, acetone excretion [E = mixed expired partial pressure (P-E)-to-P-V ratio] will appear erroneously low, because P-E is accurately measured in dry syringes, but P-V is overestimated. A physical model of a homogeneous alveolar lung at room temperature and without dead space shows: the magnitude of acetone E error depends upon the ratio of blood sample to heparinized saline volumes and acetone partial pressures, without correction, acetone E can be less than that of less soluble gases like ether, a situation incompatible with conventional gas exchange theory, and acetone R and E can be correctly calculated using the principle of mass balance if the acetone partial pressure in heparinized saline is known. Published data from multiple inert gas elimination experiments with acetone-free heparin, in our labs and others, are within the limits of experimental error. Thus the hypothesis that acetone E is anomalously low because of physiological mechanisms involving dead space tissue capacitance for acetone remains to be tested.


2017 ◽  
Vol 11 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Mirjana Novakovic ◽  
Maja Popovic ◽  
Zlatko Rakocevic ◽  
Natasa Bibic

The properties of various CrxNy films grown by direct current (DC) reactive sputtering process with different values of nitrogen partial pressures (0, 2?10-4, 3.5?10-4 and 5?10-4 mbar) were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM), while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2?10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN) during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.


2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


Sign in / Sign up

Export Citation Format

Share Document