scholarly journals Effect of Pre-treatment Solution on Iris hollandica Flower: Vase life, Anthocyanin Content, and Peroxidase Activity

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 823A-823
Author(s):  
Su-Jeong Kim* ◽  
Chun-Woo Nam ◽  
Dong-Lim Yoo ◽  
Seung-Yeol Ryu ◽  
Ki-Sun Kim

Iris hollandica `Blue Magic' was treated with deionazed water as a control, 3% sucrose (Suc), 3% sucrose plus 0.4 mm silver thiosulphate (Suc+STS), 3% sucrose plus 200 mg·L-1 8-hydroxyquinoline sulphate (Suc+HQS) and 3% sucrose plus 100 mg·L-1 benzyl amino-purine (Suc+BA) for 4hrs and then transferred to tap water. The vase life treated with Suc+BA was extended 4 days longer than that of control. The treatment Suc+STS or Suc+HQS did not improve vase life. The amounts of water uptake and transpiration by all treatments decreased after harvest, but those values were higher in cut iris treated with Suc+BA than in those with control. Cut flowers treated with by Suc+BA markedly improved water balance, comparing with control which was quickly changed to minus value. Anthocyanin content in petals of cut flower treated with Suc+BA was 3.5 fold higher than that of control. The treatment by Suc+BA delayed discoloration in petals and senescence of cut Iris. Peroxidase (POD) activities of all treatments were reached maximum at 4th day after treatment and decreased thereafter. POD activity was highest when the cut iris was treated with Suc+BA. These results show that the use of Suc+BA is most effective treatment for improving the vase life and quality of cut Iris flowers.

2021 ◽  
Vol 7 (1) ◽  
pp. 49-58
Author(s):  
Thi Ly Nguyen ◽  
Thi The Doan ◽  
Kim Lang Vo Thi ◽  
Van Chung Cao

Fresh cut flowers including yellow and white chrysanthemum (chrysanthemum sp) and red carnation (Dianthus caryophyllus L) were electron beam irradiated as quarantine treatment. The results showed that the irradiated flowers could meet the phytosanitary requirements in the international trading. In this study, the cut flowers were pretreated with the commercial preservative and sugar solutions in order to increase their radio-tolerance and expand their vase-life. The pretreatment has also reduced the weight loss, browning rate of leaves, and brightness of the irradiated flowers. The results revealed that the commercial quality of the irradiated cut flowers pretreated with 2% glucose solution 2 hours, then 0.024% silver thiosulphate (STS) solution for further 2 hours was remained after storage at 4-6oC. Pre-treatment with 2% glucose and 0.024% STS before irradiation at 400 Gy and 600 Gy was chosen as the best way for improving the raditain tolerance of the cut flowers. The vase-lifes of the irradiated cut flowers are 6 days for yellow chrysanthemum; 8 days for white chrysanthemum and 8-10 days for red carnation similar to non-irradition ones.


2003 ◽  
Vol 9 (2) ◽  
Author(s):  
F. A. S. Hassan ◽  
T. Tar ◽  
Zs. Dorogi

In order to increase the vase life as well as quality of leaves of goldenrod (Solidago canadesis), the effect of 8-hydroxyquinoline sulphate (8-HQS), silver thiosulphate (STS) and l-methylcyclopropene (l-MCP) were investigated. 8-HQS was used as a continuous treatment at 400 ppm with or without sucrose at 50 g/l. The treatment of STS was used by putting the flower bases at 0.4 mM for 6h with or without sucrose at 50 g/l. l -MCP was used at 0.5 g/m3 for 6h dry or in water. Except the treatment of l -MCP in water, the chemical treatments, which were used, led to the increase vase of life of leaves as well as to the inflorescence of cut solidago spikes compared to the control. The best treatment in this concern was 8-HQS at 400 ppm without sucrose, which resulted in longest vase life of leaves as well as inflorescences and lowest percent loss of fresh weight of initial.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 148-150 ◽  
Author(s):  
Fisun G. Çelikel ◽  
Michael S. Reid

The respiration of cut flowers of gerbera (Gerbera jamesonii H. Bolus ex Hook.f. `Vesuvio') and sunflower (Helianthus annuus L.) increased exponentially with increasing storage temperature. Poststorage vase life and negatively gravitropic bending of the neck of the flowers were both strongly affected by simulated transport at higher temperatures. Vase life and stem bending after dry storage showed highly significant linear relationships (negative and positive, respectively) with the rate of respiration during storage. The data indicate the importance of maintaining temperatures close to the freezing point during commercial handling and transport of these important commercial cut-flower crops for maximum vase life.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1704
Author(s):  
Sabir Aziz ◽  
Adnan Younis ◽  
Muhammad Jafar Jaskani ◽  
Rashid Ahmad

The short vase life is the major problem in the cut flower industry. This study was conducted to evaluate the role of different vase solutions and oils in enhancing the quality and vase life of lily cut flowers. Salicylic acid (SA; 300 mg L−1), citric acid (CA; 300 mg L−1), gibberellic acid (GA; 100 mg L−1), and clove oil (200 mg L−1) were used as vase solutions. These treatments were applied after pulsing with preoptimized sucrose 5%. It was found that SA (300 mg L−1) + sucrose (5%) improved the performance of cut flowers, which further increased the longevity of all tested lily cultivars up to eight days and the longest vase life by 17.6 days. The maximum change in fresh weight (5.60 g), increase in chlorophyll contents (3.2 SPAD value), highest protein content (6.1 mg g−1 FW), and increase in the activities of superoxide dismutase (SOD) (51.0 U g−1 protein), catalase (CAT) (36.3 U g−1 protein), and peroxidase (POD) (41.6 U g−1 protein), were recorded with the CA (300 mg L−1) + sucrose 5%. Among the cultivars, “Zambesi” performed best compared to “Sorbonne” and “Caesars”. The maximum anthocyanin contents (198%) were recorded in “Caesars”. In conclusion, among the different preservative solutions, SA performed best to prolong the vase life and quality of lily cut flowers.


2009 ◽  
Vol 57 (2) ◽  
pp. 165-174
Author(s):  
F. Hassan

This investigation was carried out to study the effect of 100, 200 and 300 ppm 8-hydroxyquinoline sulphate (8-HQS) and 5 and 10% sucrose treatments on the vase life and post-harvest quality of cut flowers of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome. All possible combinations of 8-HQS and sucrose were tested. The treatments were applied as holding solutions, and control flowers were held in distilled water till the end of the experiment. All the treatments significantly increased the vase life and number of open florets of Strelitzia reginae cut flowers compared to the control. Applying 8-HQS and sucrose treatments in both seasons improved the vase life and floret longevity of Hippeastrum vittatum cut flowers. In addition, the percentage of fresh weight gain from the initial weight and the carbohydrate content were also enhanced in both cut flower crops. In order to obtain the highest post-harvest quality of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome cut flowers, treatment with 200 ppm 8-HQS + 10% sucrose was recommended.


Genetika ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 495-502
Author(s):  
Emina Mladenovic ◽  
Jelena Cukanovic ◽  
Biljana Bozanic-Tanjga ◽  
Lazar Pavlovic ◽  
Ksenija Hiel ◽  
...  

Efficacy of preservative solutions on vase life of garden roses has not been researched before. Vast variability and morphological characteristics of this group of roses are very important, making them suitable for their use in bouquets, arrangements and vases. This research was carried out to examine the influence of five preservative solutions on vase life of garden rose cut flowers. The aim of research was to determine best preservative solution for prolonging of vase life of garden rose cut flower. The experiment included 8 rose cultivars cultivated for garden use. Each treatment consisted of 10 cut garden roses. The cut garden rose flowers with vase solution containing Al2(SO4)3+ethanol+sucrose register longer vase life and higher values in water uptake. Vase life of flowers held in tap water (control) was lowest (4.38 days). This research backs the assumption that with the use of preservative solutions, garden rose also can be used as a cut flower.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 406
Author(s):  
Haejo Yang ◽  
Sooyeon Lim ◽  
Ji-Hyun Lee ◽  
Ji-Weon Choi ◽  
Il-Sheob Shin

Vase life is one of the most important factors that determines the marketability of cut flowers and is greatly affected by the water balance. The vase life of cut hydrangea flowers varies greatly depending on the postharvest solution management. Therefore, this study investigated the vase life of freshly harvested hydrangea (Hydrangea macrophylla ‘Verena’) according to the three types of preservative solutions (tap water (TW), 1% Chrysal Professional Ⅲ (CPⅢ), 2% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid (SHQC)) and the combination solutions (pretreatment; TW, 0.1% Chrysal RVB (RVB), Floralife Quick Dip (FQ), transport; TW, CPⅢ, Floralife Clear (FC), preservative; CPⅢ, FC) for each distribution stage (pretreatment–transport–consumer). In the preservative comparison experiment, compared with the control, SHQC and CPⅢ significantly increased the vase life in 2019 (0.7 days, 3.4 days) and 2020 (1.4 days, 3.1 days), respectively. In the comparative experiment, by solution combination, the group (RVB, FQ) using the pretreatment significantly extended the vase life by 5.9 days and 4.6 days compared with the TW. These results confirm the importance of preservative solutions and pretreatment, suggesting that appropriate pretreatment and preservatives should be used to improve the marketability of cut hydrangea flowers.


2018 ◽  
Vol 4 ◽  
pp. 1-10
Author(s):  
John Kamanthi Kiige ◽  
Patrick Wachira Mathenge ◽  
Agnes Mumo Kavoo

Rose cut flower is one of the widely grown cut flowers in Kenya. However, most roses have a challenge of short vase life. This study aimed at determining the efficacy of plant extracts from thyme and stevia in preservation of rose cut-flowers. Two rose cut-flower cultivars; ‘radiance and ‘high & sparkling’ were subjected to stevia and thyme extracts each at three levels (0.2, 0.4, and 0.6gL-1). Thyme extracts at a concentration of 0.2 gL-1 significantly (p≤001) extended the vase life of rose cut flower by 3.5 days and floral absorption rates by 10.4% compared to the commercial preservative (chrysal) at the same concentration rates. Application of higher doses (0.4gL-1 and 0.6gL-1) of plant extracts led to shorter vase life (6 days) of rose cut flower and maximum bent neck records at day 8. The response of rose cut flower to the treatments did not vary between cultivars. The results from this study indicate that thyme extracts offer an attractive alternative to the use of chemical floral preservatives for prolonging the vase life and enhancing quality of rose cut flower. The efficacy of extracts is however depended on the concentration level with 0.2gL-1 dosage recording the best results.


Author(s):  
Haejo Yang ◽  
Sooyeon Lim ◽  
Ji Hyun Lee ◽  
Ji Weon Choi ◽  
Il Sheob Shin

Vase life is one of the most important factors that determine the marketability of cut flowers and is greatly affected by the water balance. In recent years, cut hydrangea flowers are increasingly consumed as decorations for various events. However, the vase life of cut hydrangea flowers varies greatly depending on the postharvest solution management. Therefore, this study investigated the vase life, solution uptake, water balance, and relative fresh weight of freshly harvested hydrangea (Hydrangea macrophylla ‘Verena’) according to the three types of holding solutions (tap water, 1% chrysal professional Ⅲ (CPⅢ), 2% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid (SHQC)) and the combination solutions (pretreatment; tap water, 0.1% chrysal RVB (RVB), floralife quickdip (FQ), transport; tap water, CPⅢ, floralife clear (FC), preservatives; CPⅢ, FC) for each distribution stage (pretreatment-transport-consumer). In the preservative comparison experiment, compared with the control, CPⅢ treatment and SHQC treatment significantly increased the vase life in 2019 (0.7 days, 3.4 days) and 2020 (1.4 days, 3.1 days), respectively. In the comparative experiment by solution combination, the group (RVB, FQ) using the pretreatment significantly extended the vase life by 4.6 days and 5.9 days compared to the tap water treatment. It was also determined that the same treatment increased overall solution uptake, maintained water balance longer, and increased relative fresh weight. These results confirm the importance of holding solutions and pretreatments, suggesting that appropriate pretreatments and preservatives should be used to improve the marketability of cut hydrangea flowers.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Lingfang Kong ◽  
Fan Li ◽  
Ronghui Du ◽  
Huaiting Geng ◽  
Shifeng Li ◽  
...  

Luculia pinceana is a potential cut flower because of its long-term blooming inflorescences and charming fragrance. However, its narrow distribution area and unexplored wild status severely restrict its applications, thus leading to the scientific research of cut L. pinceana flowers. To our knowledge, there is no available published information about the postharvest fresh-keeping of L. pinceana. During this study, the cut flowers of L. pinceana were tested using nine preservatives with different concentrations of sucrose and 8-hydroxyquinoline (8-HQ) to evaluate the fresh-keeping effects. Through the investigation and analysis of vase life, bud opening and abortion rate, water balance, malonaldehyde (MDA) content, and peroxidase (POD) activity, we selected and identified the best vase solution for cut L. pinceana flowers. The results suggested that the preservative of 1% sucrose and 100 mg/L 8-HQ could significantly prolong the vase life of cut L. pinceana flower up to 9 days compared with water control. This solution positively affects flower bud blooming, delays flower senescence, improves the water balance, inhibits the MDA accumulation, and increases POD activity. Therefore, this preservative is suitable for the fresh-keeping of cut L. pinceana flowers. Our study is the first to report the effects of preservatives on cut L. pinceana flower. The results showed that the low-sugar-containing (1% sugar) preservatives can effectively improve the ornamental quality of fresh flowers and demonstrated that the postharvest fresh-keeping of L. pinceana requires low sugar and is insensitive to microorganisms.


Sign in / Sign up

Export Citation Format

Share Document