scholarly journals Potassium Application and Leaf Sufficiency Level for Fresh-market Tomatoes Grown on a Midwestern United States Fine-textured Soil

2006 ◽  
Vol 16 (2) ◽  
pp. 247-252 ◽  
Author(s):  
H.G. Taber

Tomato (Lycopersicon esculentum) response to potassium (K) fertilization on a well-drained, central Iowa loam soil testing low in exchangeable K was evaluated over a 3-year period. Each year the experimental design was a factorial, split-plot randomized complete block with K rate as the whole unit (0 to 332 lb/acre). The subunit was cultivar, either `Mountain Spring' (determinate growth habit) or `Jet Star' (indeterminate growth habit). Fruit harvest began the first week of August and continued weekly for 5 to 8 weeks. For all years there was a significant K rate and cultivar effect for all parameters, but no interaction except for marketable fruit size and unmarketable fruit produced. Increasing the K rate to 103 lb/acre increased fruit size of both cultivars to a maximum of 8.9 oz, but year accounted for greater fruit size difference than the choice of cultivar. Maximum marketable yield for both cultivars occurred at 220 lb/acre K with `Jet Star' producing 13% more fruit than `Mountain Spring', 359 vs. 319 cwt/acre, respectively. Cullage was high, mostly as a result of blotchy ripening disorders, with `Jet Star' consistently producing more culls than `Mountain Spring'. Increasing K rate did not reduce the percentage of culls, which remained constant at about 29% of total yield. Whole-leaf K and leaf petiole sap K levels linearly increased with additional K rate for the two sample periods at flowering and mid-harvest. The whole-leaf K sufficiency level for both cultivars at the flowering stage of growth was determined to be 3.15% and dropped to 1.30% K by mid-harvest. Critical petiole leaf sap K values (using a dilution of 1:1 sap to water) could not be determined at flowering, but at mid-harvest the critical value was about 2200 to 2800 ppm K.

2018 ◽  
Vol 32 (4) ◽  
pp. 439-443 ◽  
Author(s):  
Matthew B. Bertucci ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted to determine watermelon tolerance and yield response when treated with bicyclopyrone preplant (PREPLANT), POST, and POST-directed (POST-DIR). Treatments consisted of two rates of bicyclopyrone (37.5 and 50 g ai ha–1), fomesafen (175 g ai ha–1), S-metolachlor (802 g ai ha–1), and a nontreated check. Preplant treatments were applied to formed beds 1 d prior to transplanting and included bicyclopyrone (37.5 and 50 g ha–1) and fomesafen (175 g ha–1), and new polyethylene mulch was subsequently laid above treated beds. POST and POST-DIR treatments were applied 14 ± 1 d after watermelon transplanting and included bicyclopyrone (37.5 and 50 g ha–1) POST and POST-DIR, and S-metolachlor (802 g ai ha–1) POST-DIR. POST-DIR treatments were applied to row middles, ensuring that no herbicide contacted watermelon vines or polyethylene mulch. At 2 wk after transplanting (WAT), 15% foliar bleaching was observed in watermelon treated with bicyclopyrone (50 g ha–1) PRE. At 3 WAT, bicyclopyrone (37.5 and 50 g ha–1) POST caused 16% and 17% foliar bleaching and 8% and 9% crop stunting, respectively. At 4 WAT, initial injury had subsided and bicyclopyrone (37.5 and 50 g ha–1) POST caused 4% and 4% foliar bleaching and 4% and 8% crop stunting, respectively. No symptoms of bleaching or stunting were observed at 6- and 8-WAT ratings. Watermelon total yield, marketable yield, total fruit number, marketable fruit number, and average fruit size were unaffected by herbicide treatments. Therefore, registration of bicyclopyrone (37.5 and 50 g ha–1) PREPLANT, POST, and POST-DIR would offer watermelon producers a safe herbicide option and a novel mode of action for weed management.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 759A-759
Author(s):  
Martin P.N. Gent*

Shading a greenhouse increased the fraction of tomatoes that were marketable, and the marketable yield, in a comparison of greenhouse tomato yields across years, in some of which the greenhouses were shaded. In 2003, the yield and quality of greenhouse tomatoes were compared directly when grown in spring and summer in Connecticut in identical greenhouses that differed only in the degree of shade. Each half of four greenhouses was either unshaded or shaded using reflective aluminized shade cloth rated to reduced light transmission by 15%, 30%, or 50%. Each shade treatment was repeated in two houses. Tomatoes were germinated in February and transplanted in March The houses were shaded when fruit began to ripen in early June. Picking continued through August. The effect of shade on total yield developed gradually. Yields in June were unaffected by shade, but in August yield under no shade was about 30% higher than under 50% shade. In contrast, there was an immediate effect of shade on fruit size. Fruit picked in June from plants under 50% shade was 16% smaller than from plants grown under no shade. This difference declined later in the season, to 6 and 9%, in July and August respectively. The highest yield of marketable fruit in 2003 was picked from houses under no shade, but this was only 10% more than picked from the houses under 50% shade. Shade increased the fraction of marketable fruit, from 54% under no shade to 63% under 50% shade. Certain defects were decreased by shade. For instance the fraction of fruit with cracked skin was decreased from 33% to 25%. In general, effects on fruit quality varied linearly with the degree of applied shade.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1075A-1075
Author(s):  
William B. Evans ◽  
Christine E. Coker ◽  
Kent E. Cushman ◽  
Thomas E. Horgan ◽  
Keri L. Paridon

Three years of trials in Mississippi have led to the naming of a Mississippi Medallion vegetable award winner for 2007, the fourth vegetable winner in the program's history. The Medallion program looks for garden crops that will perform throughout the state of Mississippi and help improve sales of plant materials to gardeners at retail. The Medallion selection process illustrates how growers and marketers, not just gardeners, can select specialty vegetables and cultivars for production and sale. Between 2003 and 2005, the Mississippi Medallion trials evaluated 11 sweet peppers with no green fruit stage for ornamental and yield value. Each site had three or four replications of all cultivars under evaluation annually with four plants per plot set out on raised beds with drip irrigation. Objective evaluation included total yield, marketable yield, fruit size, and days to harvest. Subjective evaluation included crop uniformity, pest tolerance, and appearance of the fruit based on color, uniformity, and shape. After nine trials, four cultivars were among the highest-yielding group in most trials: Mavras, Tequilla, Blushing Beauty, and Gypsy. The Medallion winner, to be announced in Fall 2006, was selected in part because it was within or near the top-yielding group, by least significant difference, in most trials. The perceived attractiveness of the mature fruit to the evaluating team and the perceived potential marketability of the cultivar moved it above the others under consideration. The reasons for not selecting other cultivars as the winner are as important as the reasons for selecting the winning cultivar. In the Medallion pepper case, these were mostly marketability concerns with the other cultivars, not yield issues, relative to that of the winner.


1995 ◽  
Vol 120 (6) ◽  
pp. 891-895 ◽  
Author(s):  
William G. González ◽  
William L. Summers

Seven tomato Lycopersicon esculentum lines, `Venus', `Saturn', `Rodade', `Rotam 4', `Hawaii 7998', `UC-82B', and `Stevens', and their 21 crosses were evaluated for their ability to resist infection by seven virulent strains of Pseudomonas solanacearum E.F. Sm. representing race 1 biovars 1 and 3. The Gardner and Eberhart model III analysis was used to evaluate the response of lines in crosses to P. solunaceurum infection. General combining ability mean squares were significant for all strains and in 5 of 7 instances specific combining ability mean squares were significant. In four instances the parent vs. cross contrast was significant. `Hawaii 7998' was resistant to all seven strains of P. solanacearum, whereas `Rotam 4' and `Rodade' were resistant to biovar 3 and two races of biovar 1. `Venus' and `Saturn' were resistant to two other biovar 1 strains. `Hawaii 7998' transmitted greater resistance than the other resistant parents, but its small fruit size and indeterminate growth habit make it a poor choice for a hybrid parent.


HortScience ◽  
1999 ◽  
Vol 34 (6) ◽  
pp. 1076-1078 ◽  
Author(s):  
Stephen Reiners ◽  
Dale I.M. Riggs

Field studies were conducted in 1996 on two pumpkin (Cucurbita pepo L.) cultivars, `Howden' (vining-type growth habit) and `Wizard' (semi-bush growth habit), at two locations to determine the effect of plant population and row width on marketable yield. Increasing plant populations from 2990 to 8960 plants per hectare resulted in significantly greater fruit number and yield at both locations and for both varieties. Average fruit size declined at the highest populations. Increasing row width from 1.8 to 3.6 m resulted in a slight but significant decrease in number of fruit per hectare with no effect on other yield parameters. At one location, the effect of row width on yield and number of fruit per hectare depended on the population. At low populations, row width did not influence yield or fruit number; at high populations, wide rows produced lower yield and fewer fruit than narrow rows. The results demonstrate that growers may increase pumpkin yield by increasing plant populations but should use narrower row widths and wider in-row spacing. Growers who choose higher populations should ensure that all inputs are optimized to reduce potential plant-to-plant competition and use regionally adapted cultivars.


1991 ◽  
Vol 71 (3) ◽  
pp. 947-949 ◽  
Author(s):  
Athanasios P. Papadopoulos ◽  
Chin S. Tan

Three spring and two fall crops of greenhouse tomato (Lycopersicon esculentum L. Mill; various cultivars) grown in "Harrow" peat bags were irrigated 1, 4, 8 or 16 times daily. All plants received the same volume of fertilizer solution which varied with time from 0.2 to 1.0 L plant−1 d−1 according to crop and environmental conditions. The results showed little or no effect of irrigation frequency on early or total yield, number of grade no. 1 fruit, or fruit size. Key words: Lycopersicon esculentum, marketable yield


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 509f-509
Author(s):  
Otho S. Wells

Tomato production in high tunnels is very intensive, although relatively low-input. However, optimal use of every square foot of growing space is critical to maximizing returns. Utilizing the basket-weave trellis system, `Ultrasweet' tomatoes were grown in 4 (replicated), 14-foot-wide high tunnels in 4 rows per tunnel at 3.5 ft between rows. In-row spacing of 12, 18, and 24 inches was combined with removal of sideshoots below the first flower cluster: one or three shoots at 18 and 24-inch spacing and none or one at 12-inch spacing. The highest marketable yield per plant was 22 lbs at 24 inches and three sideshoots, while the lowest yield per plant was 13.9 lbs at 12 inches and no sideshoots. The highest yield per sq ft was 4.2 lbs at 12 inches and no sideshoots, while the lowest yield per sq ft was 2.5 lbs at 24 inches and one sideshoot. The yield response to spacing and side-shoot removal was inverse for lbs per plant and lbs per sq ft. There was no difference in fruit size among any of the treatments. In a comparable experiment under field conditions, the highest yield per plant was 12.6 lbs at 24 inches and one sideshoot; and the highest yield per sq ft was 2 lbs at 12 inches and one sideshoot. The percentage of marketable fruit in the tunnels and in the field was 93.0 and 85.1, respectively.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1641-1645 ◽  
Author(s):  
Martin P.N. Gent ◽  
Michael R. Short

Recycling the nutrient solution used for greenhouse vegetable production can prevent groundwater pollution. Recycling could result in an accumulation or deficiency of elements that would be deleterious to plant growth, product quality, and the dietary value of vegetables. Complex fertilizer systems have been developed to maintain appropriate concentrations of all elements in recycled systems. We compared a much simpler system in which all excess solution drained from the plants was recycled without adjustment or dilution compared with a system with no recycling as a control. Crops of greenhouse tomato (Solanum lycopersicon L.) were grown in two years to compare these systems. Differences in composition of solution drained from the plants developed gradually over more than one month. The transition from vegetative to fruit growth, which coincided with warmer weather, resulted in a decreased demand for nitrate, and other nutrients, and an increase in electrical conductivity (EC) of water drained from the root zone. The composition of the fresh solution supplied to the plants was adjusted accordingly. It took a longer time to re-establish an optimum composition for recycled compared with control watering. EC tended to increase in the recycled system. Recycling decreased total yield and fruit size, but marketable yield was unaffected. The marketable fraction increased in the recycled treatment, primarily as a result of fewer fruit with cracked skin. This effect was consistent across seven cultivars. The cultivars differed in this and other defects, but they did not differ in their response to the two watering systems.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 514-520 ◽  
Author(s):  
Martin P.N. Gent

Some amount of shade may be optimal to produce high-quality tomatoes in a greenhouse during summer months in the northeast United States. Simultaneous comparisons were made among greenhouse sections that were either not shaded or covered with reflective aluminized shadecloth that attenuated 15%, 30%, or 50% of direct sunlight. The shadecloth was applied at the start of warm weather in June. The houses were shaded for the rest of the summer, and fruit was picked until late August. Total yield decreased linearly with increasing shade, but there was no significant difference among shade treatments in marketable yield. The fraction of fruit that was marketable was greatest for plants grown under 50% shade. This fraction was 9% greater than in a greenhouse with no shade in 2003 and 7% greater in 2004 and 2005. Cracked skin was the defect most affected by shade. Among sensitive cultivars, up to 35% of the fruit produced in greenhouses with no shade had cracked skin, whereas in greenhouses covered with 50% shade, only 24% to 26% of the tomatoes had cracked skin. There was no consistent trend for shade density in the fraction of fruit with green shoulder, blossom end rot, or irregular shape. The effect of shade increased with duration of shading. There was no effect of 50% shade compared with no shade on total yield within 20 days, but yield decreased by 20% in the interval from 25 to 45 days after shading and by 30% after 50 or more days of shading in 2005. Marketable yield only decreased after more than 45 days of shading for cultivars that were not sensitive to cracked skin or uneven ripening. Shade decreased fruit size over the entire season only in 2003. In general, shading increased the fraction of marketable tomato fruit without affecting fruit size.


HortScience ◽  
1992 ◽  
Vol 27 (7) ◽  
pp. 787-789 ◽  
Author(s):  
Aref Abdul-Baki ◽  
C. Spence ◽  
R. Hoover

Field experiments were conducted to a) maximize total yield of fresh-market field tomato (Lycopersicon esculentum Mill.) cultivars using black polyethylene mulch (BPM), and b) increase fruit size and yield during the last 5 weeks of the production period by reducing the number of synthate sinks per plant through eliminating all flowers that appeared during this period. Unmulched treatments under trickle irrigation and multiple applications of soluble fertilizer yielded an average of 43 t·ha-1 for `Sunny' and `Pik-Rite' over the two planting dates. With BPM, total yield increased by 95% to 84 t·ha-1. Although total yield increases due to BPM over the control were highly significant in both cultivars and over the two planting dates, yield increases were higher for the early than for the optimum planting date. BPM also significantly increased early production of `Pik-Rite' but not `Sunny', and the increase in early production was more pronounced for the optimum than the early planting date. Sink reduction during the last 5 weeks of the growing season had no effect on yield or fruit weight during that period.


Sign in / Sign up

Export Citation Format

Share Document