plant competition
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 69)

H-INDEX

51
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Samantha A. Catella ◽  
Castilleja Fallon Olmsted ◽  
Shaniya H. Markalanda ◽  
Connor J. McFadden ◽  
Corlett W. Wood ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2800
Author(s):  
Marcin Tyminski ◽  
Katarzyna Ciacka ◽  
Pawel Staszek ◽  
Agnieszka Gniazdowska ◽  
Urszula Krasuska

L-Tyrosine (Tyr) is one of the twenty proteinogenic amino acids and also acts as a precursor for secondary metabolites. Tyr is prone to modifications, especially under conditions of cellular redox imbalance. The oxidation of Tyr precursor phenylalanine leads to the formation of Tyr non-proteinogenic isomers, including meta-Tyr (m-Tyr), a marker of oxidative stress. The aim of this review is to summarize the current knowledge on m-Tyr toxicity. The direct m-Tyr mode of action is linked to its incorporation into proteins, resulting in their improper conformation. Furthermore, m-Tyr produced by some plants as an allelochemical impacts the growth and development of neighboring organisms. In plants, the direct harmful effect of m-Tyr is due to its modification of the proteins structure, whereas its indirect action is linked to the disruption of reactive oxygen and nitrogen species metabolism. In humans, the elevated concentration of m-Tyr is characteristic of various diseases and ageing. Indeed, m-Tyr is believed to play an important role in cancer physiology. Thus, since, in animal cells, m-Tyr is formed directly in response to oxidative stress, whereas, in plants, m-Tyr is also synthesized enzymatically and serves as a chemical weapon in plant–plant competition, the general concept of m-Tyr role in living organisms should be specified.


2021 ◽  
Author(s):  
Tiina Savolainen ◽  
Minna-Maarit Kytöviita

Abstract Purpose The ecological importance of arbuscular mycorrhizal fungi (AMF) in plant acquisition of inorganic and organic sources of nitrogen (N) is not clear. To improve understanding of the plant N nutrition ecology, we tested the effect of intraspecific competition and AMF in plant N source use in growth and N acquisition. Methods Solidago virgaurea was grown in microcosms in a fully factorial experiment under greenhouse conditions. The factors tested were intraspecific competition between seedlings and adult plants (yes, no), N source (NH4, glycine) and AMF (inoculated with Glomus hoi, not inoculated). Results When grown separately, non-mycorrhizal seedling growth was highest when grown with ammonium, but non-mycorrhizal adults grew best with glycine as the sole N source. Mycorrhizal symbiosis with Glomus hoi evened out this initial niche partitioning in terms of differences in N source use and all mycorrhizal plants grew best with ammonium. Competition shaped plant benefit from mycorrhizal symbiosis depending on the N source. Competition reduced mycorrhizal growth benefit in glycine-grown seedlings, but not in adults. Plant performance did not show uniform relationship with δ15N, but δ15N was affected by life stage, competition and mycorrhiza. Conclusions Plant competition and AMF shape plant N source use. Plant and AMF benefit of the symbiosis depend on the N source.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1704
Author(s):  
Bangli Wu ◽  
Yun Guo ◽  
Minhong He ◽  
Xu Han ◽  
Lipeng Zang ◽  
...  

Plant competition affects belowground ecological processes, such as litter decomposition and nutrient release. Arbuscular mycorrhizal (AM) fungi play an essential role in plant growth and litter decomposition potentially. However, how plant competition affects the nutrient release of litter through AM fungi remains unclear especially for juvenile plants. In this study, a competitive potting experiment was conducted using juvenile seedlings of Broussonetia papyrifera and Carpinus pubescens from a karst habitat, including the intraspecific and interspecific competition treatments. The seedlings were inoculated by AM fungus or not inoculated, and the litter mixtures of B. papyrifera and C. pubescens were added into the soil or not added. The results were as follows: Litter addition significantly increased the root mycorrhizal colonization of two species in intraspecific competition. AM fungus significantly increased the biomass of B. papyrifera seedings and nitrogen release and decreased nitrogen concentration and N/P ratio of litter and further improved the total nitrogen and N/P ratio of soil under litter. The interspecific competition interacting with AM fungus was beneficial to the biomass accumulation of B. papyrifera and improvement of soil nutrients under litter. However, intraspecific competition significantly promoted nutrient releases via AM fungus. In conclusion, we suggest that AM fungi endow greater plant biomass and soil nutrients through interspecific competition, while intraspecific competition prefers to release the nutrients of litter.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12111
Author(s):  
Na Zhang ◽  
Liwen Tian ◽  
Lu Feng ◽  
Wenxiu Xu ◽  
Yabing Li ◽  
...  

Planting density affects crop microclimate and intra-plant competition, playing an important role on yield formation and resource use, especially in areas where the cotton is grown at relatively high plant densities in Xinjiang, China. However, more studies are needed to examine how the change in planting density affects the microclimate factors such as the fraction of light intercepted (FLI), air temperature(T) and relative humidity (RH) within different canopy layers, which in turn affect the boll number per plant (BNF), boll number per unit area (BNA), boll weight (BW), and boll-setting rate (BSR) at fruiting branch (FB) positions FB1–3, FB4–6, and FB≥7 in cotton. To quantify the relationships between boll characteristics, yield, and microclimate factors, we conducted a 2-year field experiment in 2019–2020 in Xinjiang with six plant densities: 9 (P1), 12 (P2), 15 (P3), 18 (P4), 21 (P5), and 24 (P6) plants m−2. With each three plants m−2 increase in density, the average FLI and RH across different canopy layers increased by 0.37 and 2.04%, respectively, whereas T decreased by 0.64 °C. The BNF at FB≥ 7, FB4–6, and FB1–3 decreased by 0.82, 0.33, and 0.5, respectively. The highest BNA was observed in the upper and middle layers in the P4 treatment and in the lowest canopy layer with the P5. The highest BW was measured in the middle canopy layer for P3, and the highest BSR was measured in the lower layer for P3. Plant density exhibited linear or quadratic relationships with FLI, T, and RH. Microclimate factors mainly affected the boll number in each layer, but had no significant effects on the BW in any layer or the BSR in the middle and lower layers. Cotton yield was non-linearly related to plant density. The 2-year maximum yield was achieved at a plant density of 21 plants m−2, but the yield increase compared to the yield with a density of 18 plants m−2was only 0.28%. Thus, we suggest that the optimal plant density for drip-irrigated cotton in Xinjiang is 18 plants m−2, which could help farmers grow machine-harvested cotton.


2021 ◽  
Author(s):  
Nargol Ghazian ◽  
Jenna Braun ◽  
Malory Owen ◽  
Christopher J. Lortie ◽  
Calvin Cho
Keyword(s):  

2021 ◽  
Author(s):  
Daniel B Stouffer ◽  
Oscar Godoy ◽  
Giulio Valentino B Dalla Riva ◽  
Margaret Mayfield

To avoid extinction, every species must be able to exploit available resources at least as well as the other species in its community. All else being equal, theory predicts that the more distinct the niches of such co-occurring and competing species, the more species that can persist in the long run. However, both theoretical and experimental studies define a priori the nature and number of resources over which species compete. It therefore remains unclear whether or not species in empirically realistic contexts are actually exploiting all or some of the niches available to them. Here we provide a mathematical solution to this long-standing problem. Specifically, we show how to use the interactions between sets of co-occurring plant species to quantify their implied "niche dimensionality": the effective number of resources over which those species appear to be competing. We then apply this approach to quantify the niche dimensionality of 12 plant assemblages distributed across the globe. Contrary to conventional wisdom, we found that the niche dimensionality in these systems was much lower than the number of competing species. However, two high-resolution experiments also show that changes in the local environment induce a reshuffling of plant's competitive roles and hence act to increase the assemblages' effective niche dimensionality. Our results therefore indicate that homogeneous environments are unlikely to be able to maintain high diversity and also shows how environmental variation impacts species' niches and hence their opportunities for long-term survival.


2021 ◽  
Vol 911 (1) ◽  
pp. 012042
Author(s):  
I N Adijaya ◽  
N L G Budiari ◽  
I M R Yasa ◽  
A R K Sari ◽  
T F Silitonga

Abstract Intercropping planting system is one of methods to enhance the land productivity. The maize and peanut crops waste has high beneficial to farmers for cattle feed. The study of maize and peanut crops intercropping has been conducted in May-August 2020. Study was arranged by using Randomized Complete Block Design with 5 treatments and replicated for 8 times. Treatments examined were P1: Srikandi Kuning maize variety cultivated by monoculture planting system; P2: Nasa 29 maize variety cultivated by monoculture; P3: Peanut crop cultivated by monoculture; P4: Srikandi Kuning and peanut crop cultivated by intercropping; P5: Nasa 29 and peanut crop cultivated by intercropping. Variables observed were growth and yield components and analysed by analysis of variance and advanced tested by LSD at 5%. To know the land productivity, the calculation of Land Equivalent Ratio (LER) was done meanwhile the Index of Plant Competition (IPC) also was calculated to know the plant competition level. Results showed that the peanut crop productivity by intercropping was decrease about 37.50%-38.79% compared to monoculture. Meanwhile, the productivity of Srikandi Kuning maize variety was also decrease due to the reducing of plant population. The intercropping of Srikandi Kuning and Nasa 29 variety with peanut crop enhance the LER became 1.02 and 1.03. The utilization of Nasa 29 maize variety by intercropping with peanut crop was better than Srikandi Kuning with the lower IPC namely 0.8932 meanwhile the IPC of Srikandi Kuning was 0.9270. The potential waste for cattle feed at maize crop plantation by monoculture was higher than intercropping with peanut crop and peanut crops by monoculture namely P3: 572 head/ha; P1: 500 head/ha; P5: 484 head/ha; P4: 454 head/day; P3: 288 head/day.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2157
Author(s):  
Aakansha Chadha ◽  
Singarayer Florentine

Lactuca serriola L. (wild lettuce) is a highly invasive C3 weed in many countries, including Australia, Canada, and the USA. This weed is a severe threat to agricultural systems, especially in crops grown with reduced or no-tillage approaches, which commonly include wheat, cereals and pulses. Owing to the vertical orientation of its leaves in the north-south plane and its root architecture, L. serriola can maintain high water use efficiency under drought conditions, giving it the ability to expand its range under a drying climate. Each plant can produce up to 100,000 seeds which have no primary dormancy and form a short-term seedbank lasting up to three years. Most seedlings emerge in autumn and overwinter as a rosette, with a small flush of emergence in spring depicting staggered germination. Research into control methods for this weed has been performed, and these methods include chemical herbicides applied alone and in combination, the establishment of plant competition, tillage, mowing and bioherbicide. Herbicides can provide effective control when applied in the seedling or rosette stage; however, spring germination is difficult to control, as it skips the rosette stage. Some biotypes are now resistant to ALS inhibitor and synthetic auxins, causing concern regarding using herbicides. A dedicated integrated management plan for 3–4 years is recommended for the control of this troublesome species. This review will explore the biology, ecology, distribution, current control techniques and previous research on this weed, allowing us to make recommendations for its future research and management.


Sign in / Sign up

Export Citation Format

Share Document