scholarly journals Molecular Markers Associated with Plant Architecture and Resistance to Common Blight, Web Blight, and Rust in Common Beans

1996 ◽  
Vol 121 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Geunhwa Jung ◽  
Dermot P. Coyne ◽  
Paul W. Skroch ◽  
James Nienhuis ◽  
E. Arnaud-Santana ◽  
...  

Random amplified polymorphic DNA (RAPD) markers were used to construct a partial linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross BAC 6 × HT 7719 for studying the genetics of disease resistance in common bean. The linkage map spanned 545 cM and included 75 of 84 markers used in this study. The population of 128 recombinant inbred lines was evaluated for resistance to common bacterial blight, foliar resistance to web blight [WB; Thanatephorus cucumeris (Frank) Donk], and resistance to rust [Uromyces appendiculatus var. appendiculatus (Pers.:Pers) Unger]. Common bacterial blight [CBB; Xanthomonas campestris pv. phaseoli (Smith) Dye] resistance was evaluated for CBB strain Epif-IV in later-developed trifoliolate leaves and for CBB strain EK-11 in seeds, first trifoliolate leaves, later-developed trifoliolate leaves, and pods. In addition, lines were rated for plant uprightness and branch density. Two to six markers accounted for 14% to 34% of the phenotypic variation for each trait. Significant marker locustrait associations were found for 14 mapped loci and 7 of the 9 unmapped markers. The distribution of detected QTL appeared to be nonrandom with most significant markers associated with more than one trait or closely linked to markers significantly associated with variation for a different trait. One marker, BC4091250, was significantly associated with WB resistance, resistance for CBB strain Epif-IV in later-developed trifoliolate leaves, and resistance for CBB strain EK-11 in first trifoliolate leaves, later-developed trifoliolate leaves, and pods. A rust resistance gene was mapped in an interval 14.6 cM from RAPD marker H191050 and 12.5 cM from marker AJ16250.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 623f-623
Author(s):  
Geunhwa Jung ◽  
Paul W. Skroch ◽  
Dermot P. Coyne ◽  
James Nienhuis ◽  
E. Arnaud-Santana

Common bacterial blight (CBB) incited by the bacterial pathogen Xanthomonas campestris pv. phaseoli (Smith) Dye is an important disease of common bean. In a previous study, QTL associated with CBB resistance were described based on RAPD marker analysis of a recombinant inbred population derived from the common bean cross BAC-6 (R) × HT-7719 (S) (resistant × susceptible). The objective of this research is to confirm these previously described candidate marker locus-QTL associations using an inbred backcross PC-50 (S) × BAC-6 (R) and a recombinant inbred Venezuela 44 (S) × BAC-6 (R) population. Two markers previously found to be associated with QTL for CBB resistance in the BAC-6 × HT-7719 population were found to account for 30% of the phenotypic variation for CBB resistance in the PC-50 × BAC-6 inbred backcross population. The three most resistant BC2F3 lines based on marker locus genotypes were ranked 1, 3, and 7 (out of 64) based on phenotypic evaluation. These results provide important confirmation of marker locus-QTL associations and indicate that RAPD markers linked to loci controlling the expression of CBB resistance in common bean may be used to transfer resistance genes into susceptible breeding material.


1997 ◽  
Vol 122 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Geunhwa Jung ◽  
Paul W. Skroch ◽  
Dermot P. Coyne ◽  
James Nienhuis ◽  
E. Arnaud-Santana ◽  
...  

Randomly amplified polymorphic DNA (RAPD) molecular markers were used to construct a partial genetic linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross PC-50 × XAN-159 for studying the genetics of bacterial disease resistance in common bean. The linkage map spanned 426 cM and included 168 RAPD markers and 2 classical markers with 11 unassigned markers. The seventy recombinant inbred lines were evaluated for resistance to two strains of common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] (Xcp). Common bacterial blight (CBB) resistance was evaluated for Xcp strain EK-11 in later-developed trifoliolate leaves and for Xcp strains, DR-7 and EK-11, in first trifoliolate leaves, seeds, and pods. One to four quantitative trait loci (QTLs) accounted for 18% to 53% of the phenotypic variation for traits. Most significant effects for CBB resistance were associated with one chromosomal region on linkage group 5 and with two regions on linkage group 1, of the partial linkage map. The chromosomal region (a 13-cM interval) in linkage group 5 was significantly associated with resistance to Xcp strains DR-7 and EK-11 in leaves, pods, and seeds. The regions in linkage group 1 were also significantly associated with resistance to both Xcp strains in more than one plant organ. In addition, a seedcoat pattern gene (C) and a flower color gene (vlae) were mapped in linkage groups 1 and 5, respectively, of the partial linkage map. The V locus was found to be linked to a QTL with a major effect on CBB resistance.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 451E-451
Author(s):  
Phillip N. Miklas ◽  
Valerie Stone ◽  
Carlos A. Urrea ◽  
James S. Beaver

A genetic linkage map of 170 RAPD markers mapped across 79 recombinant inbred lines (Dorado and XAN-176) reveal genomic regions that condition multiple disease resistance to fungal (Ashy Stem Blight—Macrophomina phaseolina), viral (bean golden mosaic virus—BGMV), and bacterial (common bacterial blight—Xanthomonas campestris pv. phaseoli) pathogens of common bean (Phaseolus vulgaris). A genomic site on linkage group US-1 had a major effect, explaining 18%, 34%, and 40% of the variation in phenotypic reaction to ashy stem blight, BGMV, and common bacterial blight disease, respectively. Adjacent to this region was a QTL conditioning 23% of the variation in reaction to another fungal pathogen, web blight (Thanatephorus cucumeris). A second genomic site on linkage group US-1 had minor affect on multiple resistance expression to the same fungal (15%), viral (15%), and bacterial (10%) pathogens. It is unknown whether these specific genomic regions represent a series of linked QTL affecting resistance to each disease separately or an individual locus with pleiotropic effect against all three pathogens.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 499e-499
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean(Phaseolus vulgaris L.). Gene estimation, associations of traits, and confirmation of QTL for resistance to Xcp were investigated in a recombinant inbred population derived from the backcross BC2F6 PC-50 (susceptible to Xcp) × XAN-159 (resistant to Xcp). One or two genes from XAN-159 controlled leaf resistance to Xcp. One major gene from XAN-159 was involved in controlling pod resistance to Xcp. Low (+0.24) to intermediate (+0.57 and +0.75) Pearson correlations were observed between leaf and pod reactions to Xcp. Purple flower color was associated with leaf and pod resistance to Xcp but not days to flower. One to 2 QTLs explained from 20 to 51% of the total phenotypic variation for leaf reactions to 5 Xcp strains. Two QTLs explained from 20 to 22% of the total phenotypic variation for pod reactions to Xcp strains EK-11 and DR-7. A marker BC437.1050 was associated with leaf and pod resistance to 5 Xcp strains in nearly all experiments, and accounted for 13% to 45% of the phenotypic variation for these traits. A unassigned marker D13.1000 was associated with only pod resistance to Xcp strains EK-11 and DR-7. Gene number (1 or 2) estimations and number of QTL (1 or 2) detected for resistance to Xcp generally agree. The confirmed marker BC437.1050 is expected to be useful in breeding programs for resistance to Xcp.


1999 ◽  
Vol 124 (5) ◽  
pp. 519-526 ◽  
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
Geunhwa Jung ◽  
James R. Steadman

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp) is a serious disease of common bean (Phaseolus vulgaris L.). Randomly amplified polymorphic DNA (RAPD) markers and flower color (V gene) previously were reported to be associated with six quantitative trait loci (QTL) affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. The objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a recombinant inbred (RI) backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in an F2 population from a different cross pinto `Chase' × XAN-159 could be confirmed. One or two genes from XAN-159 controlled leaf and pod resistance to Xcp. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five Xcp strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. One to three QTL affecting leaf and pod resistance to Xcp accounted for 22% to 61% of the phenotypic variation. Gene number (one to two) estimations and number of QTL (one to three) detected for leaf and pod resistance to Xcp in the RI backcross population were generally in agreement. The marker BC437.1050 and V gene, along with other resistance genes from other germplasm, could be utilized to pyramid the different genes into a susceptible or partially resistant bean line or cultivar to enhance the level of resistance to Xcp.


1998 ◽  
Vol 123 (5) ◽  
pp. 864-867 ◽  
Author(s):  
H.M. Ariyarathne ◽  
D.P. Coyne ◽  
A.K. Vidaver ◽  
K.M. Eskridge

Breeding for resistance is an important strategy to manage common bacterial blight disease caused by Xanthomonas campestris pv. phaseoli (E. Smith) Dye (Xep) in common bean (Phaseolus vulgaris L.). It is necessary to determine if prior inoculation of the first trifoliolate leaf with Xcp influences subsequent reactions in other plant organs by increasing or decreasing resistance to Xcp. It is difficult to get an accurate estimate of heritability of disease reaction in pods since environment greatly affects the heritability estimate if flowering occurs over extended time periods. Thus, the disease reaction in attached pods versus detached pods was compared. A split-split plot design with two replications (growth chambers as blocks) was used, with bean lines as the whole-plot factors, Xcp strains as subplot factors, and bacterial inoculation treatments for leaf reactions or pod treatments as split-split plot factors. The first trifoliolate leaves, later developed leaves, and attached and detached pods were inoculated. No effects of prior inoculation on the disease reactions of subsequently inoculated leaves and pods were observed, indicating that the different plant organs can be inoculated at different times. The fact that detached and attached pods showed similar disease symptoms would suggest use of the former to reduce environment variance and improve heritability estimates of resistance.


1999 ◽  
Vol 124 (6) ◽  
pp. 654-662 ◽  
Author(s):  
H.M. Ariyarathne ◽  
D.P. Coyne ◽  
G. Jung ◽  
P.W. Skroch ◽  
A.K. Vidaver ◽  
...  

Diseases of beans (Phaseolus vulgaris L.) are primary constraints affecting bean production. Information on tagging and mapping of genes for disease resistance is expected to be useful to breeders. The objectives of this study were to develop a random amplified polymorphic DNA (RAPD) marker linkage map using 78 F9 recombinant inbred (RI) lines derived from a Middle-American common bean cross Great Northern Belneb RR-1 [resistant to common bacterial blight (CBB) and halo blight (HB)] × black A 55 [dominant I gene resistance to bean common mosaic potyvirus] and to map genes or QTL (quantitative trait loci) for resistance to CBB, HB, BCMV (bean common mosaic virus), and BCMNV (bean common mosaic necrosis virus) diseases. The RI lines were evaluated for resistance to leaf and pod reactions to Xanthomonas campestris pv. phaseoli (Xcp) (Smith Dye) strain EK-11, leaf reactions to two Pseudomonas syringae pv. phaseolicola (Psp) (Burkholder) Young et al. (1978) strains HB16 and 83-Sc2A, and BCMV strain US-5 and BCMNV strain NL-3. The linkage map spanned 755 cM, including 90 markers consisting of 87 RAPD markers, one sequence characterized amplified region (SCAR), the I gene, and a gene for hypersensitive resistance to HB 83-Sc2A. These were grouped into 11 linkage groups (LG) corresponding to the 11 linkage groups in the common bean integrated genetic map. A major gene and QTL for leaf resistance to HB were mapped for the first time. Three QTL for leaf reactions to HB16 were found on linkage groups 3, 5, and 10. Four regions on linkage groups 2, 4, 5, and 9, were significantly associated with leaf reactions to HB strain 83-Sc2A. The gene controlling the hypersensitive reaction to HB 83-Sc2A mapped to the same region as the QTL on LG 4. The I locus for resistance to BCMV and BCMNV was mapped to LG 2 at about 1.4 cM from RAPD marker A10.1750. Five and four markers were significantly associated with QTL for resistance to CBB in leaves and pods, respectively, with four of them associated with resistance in both plant organs. A marker locus was discovered on LG 10, W10.550, which could account for 44% and 41% of the phenotypic variation for CBB resistance in leaves and pods, respectively. QTL for resistance in pod to CBB, leaf resistance to HB, and the I gene were linked on LG 2.


2000 ◽  
Vol 125 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Phillip N. Miklas ◽  
Richard Delorme ◽  
Valerie Stone ◽  
Mark J. Daly ◽  
J. Rennie Stavely ◽  
...  

Understanding the genomic associations among disease resistance loci will facilitate breeding of multiple disease resistant cultivars. We constructed a genetic linkage map in common bean (Phaseolus vulgaris L.) containing six genes and nine quantitative trait loci (QTL) comprising resistance to one bacterial, three fungal, and two viral pathogens of bean. The mapping population consisted of 79 F5:7 recombinant inbred lines (RILs) derived from a `Dorado'/XAN 176 hybridization. There were 147 randomly amplified polymorphic DNA (RAPD) markers, two sequence characterized amplified region (SCAR) markers, one intersimple sequence repeat (ISSR) marker, two seedcoat color genes R and V, the Asp gene conditioning seed brilliance, and two rust [Uromyces appendiculatus var. appendiculatus (Pers.:Pers) Unger] resistance genes: one conditioning resistance to Races 53 and 54 and the other conditioning resistance to Race 108. These markers mapped across eleven linkage groups, one linked triad, and seven linked pairs for an overall map length of 930 cM (Kosambi). Genes conditioning resistance to anthracnose (Co-2) [Colletotrichum lindemuthianum (Sacc. and Magnus) Lams.-Scrib.], bean rust (Ur-5), and bean common mosaic virus (I and bc-3) (BCMV) did not segregate in this population, but were mapped by inference using linked RAPD and SCAR markers identified in other populations. Nine previously reported quantitative trait loci (QTL) conditioning resistance to a variety of pathogens including common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye], ashy stem blight [Macrophomina phaseolina (Tassi) Goid.], and bean golden mosaic virus (BGMV), were located across four linkage groups. Linkage among QTL for resistance to ashy stem blight, BGMV, and common bacterial blight on linkage group B7 and ashy stem blight, BGMV, and rust resistance loci on B4 will complicate breeding for combined resistance to all four pathogens in this population.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 820E-820 ◽  
Author(s):  
Geunhwa Jung ◽  
Dermot P. Coyne ◽  
Paul W. Skroch ◽  
James Nienhuis ◽  
E. Arnaud-Santana ◽  
...  

Common blight, web blight, and rust, incited by the bacterial pathogen Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp) and the fungal pathogens Thanatephorus cucumeris (Frank) Donk (Tc) and Uromyces appendiculatus (Pers.:Pers) Unger, respectively, are important diseases of common beans (Phaseolus vulgaris L.). The objectives of were to construct a linkage map, and to locate CBB, rust, and WB resistances and plant architecture traits using RAPDs. Ten linkage groups were identified. Eighty-nine RAPD markers and rust resistance were mapped in 128 RI lines of the cross BAC-6 and HT-7719. Regression analysis and interval mapping using MAPMAKER/QTL were used to identify genomic regions involved in the genetic control of the traits. One, two, two, and three putative QTLs were identified for leaf, seed, and pod reactions to Xcp, and foliar reaction to Tc. These regions accounted for 11%, 9%, 32%, and 30% of the phenotypic variation in the resistances. Two, two, and three regions were identified for plant uprightness, branch density, and pod distribution. These regions accounted for 27%, 13%, and 16% of the phenotypic variation. Unassigned marker G17d influenced some of the phenotypic variation in all three traits. A rust resistance gene controlling pustule size on primary leaves was located in linkage group 1.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 454B-454
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
James R. Steadman ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean (Phaseolus vulgaris). RAPD markers and flower color (V gene) previously had been reported to be associated with six QTL affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. Our objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a RI backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in a F2 population from a different cross Pinto `Chase' × XAN-159 could be confirmed. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five XCP strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. The confirmed marker BC437.1050 and V gene on linkage group 5, along with other resistance genes from other germplasm, could be used to pyramid the different genes into a bean cultivar to enhance the resistance to Xcp.


Sign in / Sign up

Export Citation Format

Share Document