scholarly journals Dynamics of Polysaccharides and Neutral Lipids during Anther Development in Castor (Ricinus communis)

2015 ◽  
Vol 140 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Dongmei Wei ◽  
Huimin Xu ◽  
Ruili Li

Anthers contain starch and neutral lipids, which have key roles in microspore ontogeny and gametophyte development. In this study, we observed the dynamic changes in starch and neutral lipids in the anther developmental processes of castor (Ricinus communis) by cytochemical methods. Starch grains and neutral lipids presented a regular dynamic distribution during anther development. In young anthers, some neutral lipids accumulated in sporogenous cells, whereas neutral lipids disappeared with microspore growth. At the late microspore stage, starch grains began to accumulate in microspores, and the starch content of bicellular pollen significantly increased after microspore mitosis. At anthesis, starch grains and neutral lipids accumulated in the mature pollen grains. Visible changes occurred in anther wall cells. The epidermis, middle layer, and tapetum were degenerated, and only a single layer of endothecium remained at anthesis. The dynamic variation of starch grains and neutral lipids in tapetal cells was consistent with the changes in microspores and pollen during anther development. All these findings demonstrated that tapetal cells directly interacted with the developing gametophytes. The tapetal cells play an important role in supplying nutritional substances for microspore absorption. Moreover, the endothecium protects the pollen and contributes to anther dehiscence. The results of this study provide a foundation for the further research on sexual reproduction in angiosperms.

HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 945-950
Author(s):  
Weiping Zhong ◽  
Zhoujun Zhu ◽  
Fen Ouyang ◽  
Qi Qiu ◽  
Xiaoming Fan ◽  
...  

The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.


2011 ◽  
Vol 70 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Filiz Vardar ◽  
Meral Ünal

Cytochemical and ultrastructural observations of anthers and pollen grains inLathyrus undulatusBoissInLathyrus undulatusBoiss. (Fabaceae), the young microspore stage of anther development was characterized by the enlarged secretory tapetal cells, which presented an intense reaction with regard to protein, insoluble polysaccharides and lipids. At bicellular pollen stage, the middle layer and the tapetum degenerated. After degradation of the tapetum, epidermis and single row U-shaped endothecium existed in the mature anther wall, and pollen grains remained in the locus. Young microspores had a spherical and centrally located nucleus with one or two nucleoli, many spherical lipid bodies and starchy plastids. A mature pollen grain contains insoluble polysaccharides, proteins, lipids and calcium. The mature pollen had the following morphological characteristics: 3-zonocolporate, prolate, tectate (imperforate) type of exine and perforate type of structure. The intine formed an important constituent portion of the wall, and consisted two sublayers: an outer intine (exintine) and an inner intine (endintine). The well-defined exine was made up of lipoidal substances and protein, but the intine composed of insoluble polysaccharides and protein. The bicellular state of the pollen grains persisted to anthesis.


2021 ◽  
Author(s):  
Agnieszka Zienkiewicz ◽  
Marta Saldat ◽  
Krzysztof Zienkiewicz

In plants, lipids serve as one of the major and vital cellular constituents. Neutral lipids reserves play an essential role in the plant life cycle by providing carbon and energy equivalents for periods of active metabolism. The most common form of lipid storage are triacylglycerols (TAGs) packed into specialized organelles called lipid droplets (LDs). They have been observed in diverse plant organs and tissues, like oil seeds or pollen grains. LDs consist of a core, composed mostly of TAGs, enclosed by a single layer of phospholipids that is decorated by a unique set of structural proteins. Moreover, the recent advances in exploration of LDs proteome revealed a plethora of diverse proteins interacting with LDs. This is likely the result of a highly dynamic nature of these organelles and their involvement in many diverse aspect of cellular metabolism, tightly synchronized with plant developmental programs and directly related to plant-environment interactions. In this review we summarize and discuss the current progress in understanding the role of LDs and their cargo during plants life cycle, with a special emphasis on developmental aspects.


1979 ◽  
Vol 57 (6) ◽  
pp. 578-596 ◽  
Author(s):  
P. C. Cheng ◽  
R. I. Greyson ◽  
D. B. Walden

Anther ontogeny of a genic male-sterile mutant (ms 10/ms 10) and a related fertile cultivar of Zea was studied from the primordial stage through to tassel maturity. From material glutaraldehyde–formalin fixed, OsO4 postfixed, and plastic embedded, light microscopy of 0.7-μm sections revealed no developmental differences between the two until the young microspore stage. Vacuolation or cytoplasmic disintegration of tapetal cells was detected in male-sterile anthers at this stage. Disintegration of microspores was not detected until the intermediate microspore stage. By the young pollen stage, tapetal cells were highly disorganized and degeneration of the middle layer and endothecium was apparent. No endothecial wall thickenings developed in male-sterile anthers.In normal anther development in Zea, endothecial thickenings are found only at the anterior and posterior ends of the anther. A highly ridged anther cuticle, which is essentially absent in male-sterile anthers, is a common feature of fertile flowers. Anther dehiscence involves a separation of the epidermis from the underlying parenchyma of the connective to form a large pollen cavity from the two microsporangial locules. This process does not involve endothecial fibrous wall thickenings as they are not present over the bulk of the anther. Formation of the anterior pore is a separate process which involves changes in the endothecium wall thickenings.During normal anther development starch accumulates in the endothecium and epidermis at the precallose stage and disappears during the young microspore stage. No differences were noted in the male-sterile anthers. During the formation of normal pollen, considerable starch accumulation is evident. However, none is deposited at this late stage in the male-sterile anther.


2010 ◽  
Vol 58 (7) ◽  
pp. 597 ◽  
Author(s):  
Stella M. Solís ◽  
Beatriz Galati ◽  
María S. Ferrucci

Microsporogenesis and microgametogenesis of two species, Cardiospermum grandiflorum Sw. and Urvillea chacoensis Hunz. (Sapindaceae, Paullinieae), were studied using light and transmission electron microscopy. Both species are monoecious, with staminate and hermaphrodite, although functionally pistillate, flowers. A comparative pollen-development study of these two floral morphs is reported. For the present study, five stages of pollen ontogeny were identified. The development of the anther wall is of basic type. Its wall consists of epidermis, endothecium, two middle layers and a uninucleate secretory tapetum. The microspore tetrads are tetrahedral. The mature anther in staminate flowers presents the endothecium with well developed fibrillar thickenings, remains of tapetal cells, a single locule formed in the theca by dissolution of the septum before anther dehiscence and two-celled pollen grains when shed. In functionally pistillate flowers, the mature anthers present remnants of the middle layers, tapetal cells without signs of degradation, the theca with two locules and pollen grains uni- or bicellular, some of them with the cytoplasm collapsed. These anthers are not dehiscent. It can be concluded that male sterility is characterised by failure to produce functional pollen grains, an event that would be associated with the persistence of tapetal cells. Ultrastructural analysis clearly shows the difference in tapetal cells between the two flower morphs.


2017 ◽  
pp. 25
Author(s):  
Sonia Vázquez-Santana ◽  
César A. Domínguez ◽  
Judith Márquez-Guzmán

We studied the development of reproductive structures in pin and thrum morphs of Erythroxylum havanense. The young anther wall consists of an epidermis, endothecium , 1-3 middle layers anda binucleate secretory tapetum. The mature anther wall has only two layers: epidermis and endothecium. Microspore tetrads are tetrahedral or isobilateral. Mature pollen grains are tricolporate, bicellular and contain starch grains. Exine sculpturing is verrugate in thrum pollen and reticulate in pin pollen. The ovule is sessile, pendulous, anatropous, bitegmic and crassinucellate. The embryo sac is heptacellular. An endothelium is differentiated. The endosperm development is nuclear, and the basal part of the nucellus persists during early endosperm development. Both integuments form the seed coat.


1963 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
G Want

In Wahlenbergia bicolor, the anther wall is composed of four layers: epidermis, endothecium, middle layer, and tapetum. Wall formation and microsporogenesis are described, and the pollen grains are shed at the two-celled condition. The ovules are tenuinucellate, with a hypodermal archesporial cell which develops directly as the megaspore mother cell. Megasporogenesis is normal, and a monosporic eight-nucleate embryo sac of the most common Polygonum type develops from the chalazal megaspore. The antipodals degenerate before fertilization. The development of the embryo is of the solanad type. A suspected case of polyembryony was observed. The endosperm is cellular from its inception, and so conforms to the Codonopsis type. A micropylar and a chalazal haustoriurn, both consisting of two uninucleate cells, are formed from the endosperm. Comparative studies were made with a known but as yet undescribed coastal species of Wahlenbergia, and no differences were found.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing-Shi Xue ◽  
Chi Yao ◽  
Qin-Lin Xu ◽  
Chang-Xu Sui ◽  
Xin-Lei Jia ◽  
...  

The middle layer is an essential cell layer of the anther wall located between the endothecium and tapetum in Arabidopsis. Based on sectioning, the middle layer was found to be degraded at stage 7, which led to the separation of the tapetum from the anther wall. Here, we established techniques for live imaging of the anther. We created a marker line with fluorescent proteins expressed in all anther layers to study anther development. Several staining methods were used in the intact anthers to study anther cell morphology. We clarified the initiation, development, and degradation of the middle layer in Arabidopsis. This layer is initiated from both the inner and outer secondary parietal cells at stage 4, stopped cell division at stage 6, and finally degraded at stage 11. The neighboring cell layers, the epidermis, and endothecium continued cell division until stage 10, which led to a thin middle layer. The degradation of the tapetum cell wall at stage 7 lead to its isolation from the anther wall. This work presents fundamental information on the development of the middle layer, which facilitates the further investigation of anther development and plant fertility. These live imaging methods could be useful in future studies.


2015 ◽  
Vol 26 (2) ◽  
pp. 293-302
Author(s):  
L. Hausbrandt ◽  
W. Golinowski ◽  
E. Sawicka

Only in one of 12 investigated species i.e. in <i>Solanum chacoense (gibberulosum)</i> which became pollen staining red when treated with I+KI was been found. However in three forms:<i> Solanum verrucosum</i>, 133 <i>Solanum chacoense (Schickii)</i> and 127 <i>Solanum chacoense (gibberulosum)</i> the dimorphism of starch grains within the anther wall has been observed. It can be assumed that in these forms starch with a prevailing amount of amylopectin will be formed.


Biologia ◽  
2014 ◽  
Vol 69 (10) ◽  
Author(s):  
Nuran Ekici

AbstractIn this study, Gagea villosa (Bieb.) Duby was investigated by using light microscopy methods in cytological and cytoembryological respects. Anthers were tetrasporangiate. Anther wall was formed with an epidermis, endothecium, middle layer and tapetum. Tapetum was glandular type and it began to degenerate when microspores released from tetrads. Tapetum cells generally have one or two nuclei. Mitosis seen in tapetum cells was generally normal but micronuclei were found in some of them. Fibrous thickenings were determined in endothecium. Microsporogenesis and pollen mitosis were generally regular. Cytokinesis was successive type. Meiosis in pollen mother cells was asynchronous in one anther locus. Mature pollen grains were 2-celled. Pollen sterility was found to be 24%. Some of the fertile pollen grains, smaller than the normal were seen at the end of the pollen mitosis. Microgametophyte development was examined in vivo and in vitro. Germination ratio of pollen grains in vitro was 4%. Generally swollen pollen tube tips and weak development of some curled pollen tubes were seen. Callose plug formation was seen only in vivo pollen tube growth.


Sign in / Sign up

Export Citation Format

Share Document