scholarly journals Nitric acid solution after treating miscanthus as a growth regulator of seed peas (Pisum sativum L.)

Author(s):  
E. A. Skiba ◽  
M. A. Skiba ◽  
O. I. Pyatunina

Abstract: All over the world, miscanthus is positioned as an extremely promising and rapidly renewable cellulose- containing raw material for the production of a large number of substances of chemical and biotechnological synthesis. The Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch оf the Russian Academy of Sciences has been developing its own methods of treating miscanthus using diluted solutions of nitric acid. While the amount of a waste solution (liquid phase) is 20 times greater than the target product — a solid phase -- intended for enzymatic hydrolysis and further microbiological synthesis of bioethanol, bacterial cellulose and other valuable products. The hypothesis states that a nitric acid solution after treatment with miscanthus, which was neutralized with ammonium hydrate (hereinafter referred to as the preparation), is a combined lignohumic fertilizer. Testing this hypothesis has required studying the growth-regulating activity of the preparation using the example of sowing pea seeds. The results show that, depending on the degree of dilution and the exposure time, the preparation acts in two ways: either as a stimulant or as a growth inhibitor. Thus, at a dilution rate of 1:10, the preparation acts as an inhibitor, and at a dilution rate of 1:1,000,000, its effect ceases. The working range includes the dilution rate between 1:100 and 1:10,000, when an increase in germination energy and rate is observed by 2–6% compared to the control and root growth is stimulated by 21–29%, i.e. an auxin-like growth-stimulating effect is observed. With prolonged endurance during the 4th day, the preparation showed a growth-inhibiting effect, indicated by the decrease in the germination energy and rate, the length of the stems and roots of the sowing pea. The new preparation showing growth-stimulating activity under certain conditions, supposedly confirms the hypothesis that it is a combined lignohumic fertilizer.

2019 ◽  
Vol 280 ◽  
pp. 05019
Author(s):  
Hesti Wijayanti ◽  
Iryanti Fatyasari Nata ◽  
Rinny Jelita

Rice husk is considered as agricultural waste that causes environmental problem during its handling. In this study, rice husk was treated with acid (citric acid and nitric acid) solutions prior used as raw material for producing biofuel and chemicals via pyrolysis. The pyrolysis behaviors of rice husk treated with water and acid solutions have been investigated through thermogravimetric analysis from room temperature to 600 oC at the heating rate of 10oC/min under 50 ml/min nitrogen flow. Demineralization treatment using strong acid (nitric acid) solution showed more impacts to the rice husk in thermogravimetric analysis, i.e. lower ash content, less minerals content and thermal stability increased. One step model kinetic resulted the lowest activation energy (12.8709 kJ/mol) occured at the 5% nitric acid solution treatment. Excellent agreement between the experimental data and model predictions was found with 8.63% of the relative error. In other words, demineralization using 5% nitric acid solution would improve rice husk performance during its pyrolysis reaction for producing biofuel.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25314-25333
Author(s):  
Mai A. Khaled ◽  
Mohamed A. Ismail ◽  
Ahmed. A. El-Hossiany ◽  
Abd El-Aziz S. Fouda

This study targets the investigation of three pyrimidine derivatives (MA-1230, MA-1231, MA-1232) for the prevention of corrosion on copper in 1 M HNO3via weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques.


2015 ◽  
Vol 53 (9) ◽  
pp. 1371-1379 ◽  
Author(s):  
Chiaki Kato ◽  
Yasuhiro Ishijima ◽  
Fumiyoshi Ueno ◽  
Masahiro Yamamoto

2021 ◽  
Vol 69 (1) ◽  
pp. 74-79
Author(s):  
Sihua Wang ◽  
Junjun Wang ◽  
Chen Long ◽  
Zhao Lei

Some studies have shown that the operating state of silicone rubber insulators is not only affected by surface corona discharge, but also different due to the surface covered with different pollutants, but few studies have linked the two. In this paper, by designing the corona discharge test of silicone rubber insulator, the output of nitric acid from its surface product was calculated, and the concentration of nitric acid under different air humidity was obtained. The solubility test of slightly dissolved salt calcium sulfate in nitric acid solution at 293.15K and 333.15K was designed to obtain the solubility of calcium sulfate at different concentrations of nitric acid at two temperatures. Finally, a quantitative analysis of the solubility of calcium sulfate on the surface of insulator FXBW-10/70 in nitric acid solution shows that the surface contamination of insulator with good hydrophobicity may be completely dissolved by nitric acid solution, but the surface of insulator with loss of hydrophobicity cannot be completely dissolved by nitric acid. This study provides a theoretical basis for the dissolution characteristics of silicon rubber insulator corona discharge on its surface soluble salt composition and provides a new idea for the influence of insulator corona discharge on its electrical properties.


Sign in / Sign up

Export Citation Format

Share Document