Turfgrass Growth, N Use, and Water Use under Soil Compaction and N Fertilization 1

1983 ◽  
Vol 75 (3) ◽  
pp. 488-492 ◽  
Author(s):  
M. J. Sills ◽  
R. N. Carrow
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2011 ◽  
Vol 46 (10) ◽  
pp. 1357-1363 ◽  
Author(s):  
Alvadi Antonio Balbinot Junior ◽  
Milton da Veiga ◽  
Anibal de Moraes ◽  
Adelino Pelissari ◽  
Álvaro Luiz Mafra ◽  
...  

The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1161
Author(s):  
Amir Souissi ◽  
Haithem Bahri ◽  
Hatem Cheikh M’hamed ◽  
Mohamed Chakroun ◽  
Salah Benyoussef ◽  
...  

The implementation of conservation agriculture (CA) remains crucial for facing interannual variability in climatic conditions that impact durum wheat production and food security. The current work was conducted to assess the effects of the tillage practice, previous crop, and nitrogen (N) fertilization rate on the agronomic and economic performances of rainfed durum wheat in a semi-arid environment in Tunisia. Tillage practices included no-tillage (NT) and conventional tillage (CT). Preceding crops were either a common vetch or a bread wheat. The N rates applied were: 0, 75, 100, 120, and 140 kg N ha−1. Our results show that, based on a 2-year experiment, tillage practices are not affecting grain yield, grain N, and gross margins. However, the N-use efficiency of durum wheat was significantly higher when wheat was grown using NT. Grain yield and N content in grain were 340 kg ha−1 and 0.34%; much higher after vetch than after bread wheat. For both tillage practices, the merit of 75 kg N ha−1 is paramount to maximize yield through a more efficient use of available N. Our results highlight the importance of no-tillage-based CA combined with rotation, including vetch, on enhanced yields, N-use efficiency, and gross margins. These findings provide the evidence of the positive impact of CA for rainfed durum wheat under semi-arid Mediterranean conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Mariangela Diacono ◽  
Paola Baldivieso-Freitas ◽  
Francisco Sans Serra

Optimization of the nitrogen (N) inputs and minimization of nutrient losses strongly affect yields in crop rotations. The aim of this research was to evaluate the effect of agricultural practices on yield and N use in a 4-year cereal-legume rotation in organic farming and to identify the best combination of these practices. The following treatments were compared: conventional plough (P) vs. reduced chisel (RC) tillage; composted farmyard manure (F) vs. unfertilized control (NF); and green manure (GM) vs. no green manure (NoM). No significant differences were found for N use efficiency between P and RC in each crop. The results suggested that legumes in the tested rotation do not need supplemental N fertilization, particularly if combining GM and F. The use of composted farmyard manure should be considered in a long-term fertilization plan for cereals, to allow a higher efficiency in N use. The residual effect of fertilization over time, along with the site-specific pedo-climatic conditions, should also be considered. In both tested tillage approaches, soil N surplus was the highest in plots combining GM and F (i.e., more than 680 kg N ha−1 in combination with RC vs. about 140 kg N ha−1 for RC without fertilization), with a risk of N losses by leaching. The N deficit in NoM–NF both combined with P and RC would indicate that these treatment combinations are not sustainable for the utilized crops in the field experiment. Therefore, the combination of the tested practices should be carefully assessed to sustain soil fertility and crop production.


Soil Science ◽  
1961 ◽  
Vol 92 (5) ◽  
pp. 347-350 ◽  
Author(s):  
S. J. RICHARDS ◽  
L. V. WEEKS ◽  
L. C. ERICKSON

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 681 ◽  
Author(s):  
Conversa ◽  
Elia

Excessive nitrogen (N) fertilizers are applied in lettuce causing both environmental issues and N crop luxury consumption. In order to improve the N use efficiency (NUE) by defining optimal crop growth and N requirements of butterhead and crisphead lettuce, two field experiments were conducted using 0, 50, and 100 kg ha−1 of N fertilizer to study (i) the growth and productivity, (ii) the NUE, (iii) the critical N dilution curve, and (iv) the N demand. Nitrogen supply enhanced dry weight (DW) accumulation in the butterhead (from 295 to 410 g m−2), but not in the crisphead type (251 g m−2). The NUE indices underlined the poor ability of the crisphead type in absorbing soil N and also in the utilization of the absorbed N for producing DW. The critical N dilution curves %Nc = 3.96 DW−0.205 and %Nc = 3.65 DW−0.115 were determined for crisphead and butterhead lettuce, respectively. Based on these type-specific %Nc curves, the estimated N demand was 125 kg ha−1 in the butterhead and 80 kg ha−1 in the crisphead lettuce for producing 4.3 and 2.5 Mg ha−1 of DW, respectively, under Mediterranean climate. Neither N fertilization nor genotype affected crop productivity.


Sign in / Sign up

Export Citation Format

Share Document