scholarly journals Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models

Author(s):  
Geert Mesters ◽  
Siem Jan Koopman ◽  
Marius Ooms
2006 ◽  
Vol 3 (4) ◽  
pp. 1603-1627 ◽  
Author(s):  
W. Wang ◽  
P. H. A. J. M. van Gelder ◽  
J. K. Vrijling ◽  
X. Chen

Abstract. The Lo's R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the maximum likelihood estimation method implemented in S-Plus (S-MLE) are evaluated through intensive Mote Carlo simulations for detecting the existence of long-memory. It is shown that, it is difficult to find an appropriate lag q for Lo's test for different AR and ARFIMA processes, which makes the use of Lo's test very tricky. In general, the GPH test outperforms the Lo's test, but for cases where there is strong autocorrelations (e.g., AR(1) processes with φ=0.97 or even 0.99), the GPH test is totally useless, even for time series of large data size. Although S-MLE method does not provide a statistic test for the existence of long-memory, the estimates of d given by S-MLE seems to give a good indication of whether or not the long-memory is present. Data size has a significant impact on the power of all the three methods. Generally, the power of Lo's test and GPH test increases with the increase of data size, and the estimates of d with GPH test and S-MLE converge with the increase of data size. According to the results with the Lo's R/S test (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the S-MLE method, all daily flow series exhibit long-memory. The intensity of long-memory in daily streamflow processes has only a very weak positive relationship with the scale of watershed.


2009 ◽  
Vol 37 (1) ◽  
pp. 223-245 ◽  
Author(s):  
Alexandros Beskos ◽  
Omiros Papaspiliopoulos ◽  
Gareth Roberts

Sign in / Sign up

Export Citation Format

Share Document