recurrence equations
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2050
Author(s):  
Włodzimierz Bielecki ◽  
Piotr Błaszyński

In this article, we present a technique that allows us to generate parallel tiled code to calculate general linear recursion equations (GLRE). That code deals with multidimensional data and it is computing-intensive. We demonstrate that data dependencies available in an original code computing GLREs do not allow us to generate any parallel code because there is only one solution to the time partition constraints built for that program. We show how to transform the original code to another one that exposes dependencies such that there are two linear distinct solutions to the time partition restrictions derived from these dependencies. This allows us to generate parallel 2D tiled code computing GLREs. The wavefront technique is used to achieve parallelism, and the generated code conforms to the OpenMP C/C++ standard. The experiments that we conducted with the resulting parallel 2D tiled code show that this code is much more efficient than the original serial code computing GLREs. Code performance improvement is achieved by allowing parallelism and better locality of the target code.


2021 ◽  
Vol 24 (1) ◽  
pp. 13001
Author(s):  
H. Akιn

In this present paper, the recurrence equations of an Ising model with three coupling constants on a third-order Cayley tree are obtained. Paramagnetic and ferromagnetic phases associated with the Ising model are characterized. Types of phases and partition functions corresponding to the model are rigorously studied. Exact solutions of the mentioned model are compared with the numerical results given in Ganikhodjaev et al. [J. Concr. Appl. Math., 2011, 9, No. 1, 26-34].


Author(s):  
Gang Chen ◽  
Xiaoyu Song ◽  
Guowu Yang ◽  
Ting Wang ◽  
Xiaoqiao Mu ◽  
...  

Author(s):  
Mikhail Kirsanov

The scheme of a planar externally statically indeterminate truss with four supports is proposed. In analytical form, for several types of loads, the problem of forces in the rods and deflectionof the structure is solved, depending on the number of panels, the size and intensity of the load. The solution uses the Maple computer mathematics system. The deflectionat Midspan is determined using Maxwell – Mohr's formula, the forces in the rods – the method of cutting out nodes from the system of equilibrium equations for all nodes, which includes four reactions of the supports. By induction, a series of solutions for trusses with a consistently increasing number of panels is generalized to an arbitrary number of panels. For the elements of the sequences of coefficientare developed and are solved by homogeneous linear recurrence equations. The resulting formulas for the deflectio of the structure under various loads have the form of polynomials in the number of panels. A linear asymptotic solution for the number of panels is found. The kinematic degeneration of the structure and the distribution of node speeds corresponding to this case were found. The dependences of the reaction of supports and forces in the most compressed and stretched rods on the number of panels are determined.


2019 ◽  
Vol 11 (1) ◽  
pp. 96-106
Author(s):  
I.I. Lishchynsky

Algebraic and recursion equations are widely used in different areas of mathematics, so various objects and methods of research that are associated with them are very important. In this article we investigate the relationship between $(n,m)$-forms with generalized Diophantine Pell's equation, algebraic equations of $n$ degree and recurrent fractions. The properties of the $(n,m^n+1)$-forms and their characteristic equation are considered. The author applied parafunctions of triangular matrices to the study of algebraic equations and corresponding recurrence equations. The form of adjacent roots of the annihilating polynomial of arbitrary $(n,m)$-forms over the field of rational numbers are explored. The following question is very important for some applied problems: Is a given form the largest by module among its adjacent roots? If it is so, then there is a periodic recurrence fraction of $n$-order that is equal to this $(n,m)$-form, and its $m$th rational shortening will be its rational approximation. The author has identified the class $(n,m)$-forms with the largest module among their adjacent roots and showed how to find periodic recurrence fractions of $n$-order and rational approximations for them.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 741 ◽  
Author(s):  
Salvador Romaguera ◽  
Pedro Tirado

We obtain quasi-metric versions of the famous Meir–Keeler fixed point theorem from which we deduce quasi-metric generalizations of Boyd–Wong’s fixed point theorem. In fact, one of these generalizations provides a solution for a question recently raised in the paper “On the fixed point theory in bicomplete quasi-metric spaces”, J. Nonlinear Sci. Appl. 2016, 9, 5245–5251. We also give an application to the study of existence of solution for a type of recurrence equations associated to certain nonlinear difference equations.


Author(s):  
Mikhail N. Kirsanov

Introduction. A scheme is proposed for a planar symmetric statically determinate beam truss with a rectilinear lower belt, struts, multidirectional braces and a polygonal outline of the upper belt. The belts of the truss are rectilinear, the hinges are ideal. The truss belongs to the class of regular trusses having periodic cells. The supporting rods are not deformable. The truss is evenly loaded around the nodes of the lower belt. Materials and methods. The task is to deduce the dependence of the deflection of the truss on the number of panels in the span. The deflection is obtained from the Maxwell-Mora formula under the assumption that all the rods have the same rigidity. Forces in the structural rods from the effective uniform load and from the unit vertical in the middle of the span are determined by the method of cutting the nodes. The matrix of the system of linear equations of node equilibrium is made up of the cosines of the forces with the coordinate axes. To compile a system of equations and solve it, the program of symbolic mathematics Maple is used. To obtain the general formula, a number of problems of trusses with a number of panels from 2 to 29 are solved. Sequences of the coefficients of the deflection formula have common terms for which homogeneous recurrence equations are also compiled using the methods of the Maple system using specialized operators. Results. The solutions of recurrence equations have the form of polynomials with coefficients that depend on the parity of the number of panels and contain trigonometric functions. The graphs of the solutions obtained are constructed and analysed. Sharp changes of deflection characteristic for such truss and their non-monotonic character are noted. It is shown that for a fixed, independent on the number of panels, length of the span and the total load, the relative deflection with increasing number of panels first decreases, then varies little. Conclusions. The asymptotic property of the solution is obtained by the methods of the Maple system: an inclined asymptote is found. The slope is calculated using the analytical capabilities of Maple. A simple formula is derived for the horizontal displacement of the mobile support from the action of the load. The dependence is monotonic. The height of the truss is included in the denominator of the formula.


Sign in / Sign up

Export Citation Format

Share Document