scholarly journals Mental Accounting: A Closed-Form Alternative to the Black Scholes Model

Author(s):  
Hammad Siddiqi
2021 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort.


2021 ◽  
Author(s):  
Pablo Olivares ◽  
Alexander Alvarez

We propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model. The method is based on Taylor and Chebyshev expansions and involves mixed exponential-power moments of a Gaussian distribution. Our numerical results show that both approaches are comparable in accuracy to a standard Monte Carlo method, with a lesser computational effort


2021 ◽  
Vol 63 ◽  
pp. 143-162
Author(s):  
Xin-Jiang He ◽  
Sha Lin

We derive an analytical approximation for the price of a credit default swap (CDS) contract under a regime-switching Black–Scholes model. To achieve this, we first derive a general formula for the CDS price, and establish the relationship between the unknown no-default probability and the price of a down-and-out binary option written on the same reference asset. Then we present a two-step procedure: the first step assumes that all the future information of the Markov chain is known at the current time and presents an approximation for the conditional price under a time-dependent Black–Scholes model, based on which the second step derives the target option pricing formula written in a Fourier cosine series. The efficiency and accuracy of the newly derived formula are demonstrated through numerical experiments. doi:10.1017/S1446181121000274


Sign in / Sign up

Export Citation Format

Share Document