Heart Disease Prediction Using Multi-Constrain Support Vector Machine

2018 ◽  
Author(s):  
Krishna Veni G. ◽  
Sudha Dr.T.

The patient’s heart disease status is obtained by using a heart disease detection model. That is used for the medical experts. In order to predict the heart disease, the existing technique use optimal classifier. Even though the existing technique achieved the better result, it has some disadvantages. In order to improve those drawbacks, the suggested technique utilizes the effective method for heart disease prediction. At first the input information is preprocessed and then the preprocessed result is forwarded to the feature selection process. For the feature selection process a proficient feature selection is used over the high dimensional medical data. Hybrid Fish Bee optimization algorithm (HFSBEE) is utilized. Thus, the proposed algorithm parallelizes the two algorithms such that the local behavior of artificial bee colony algorithm and global search of fish swarm optimization are effectively used to find the optimal solution. Classification process is performed by the transformation of medical dataset to the Multi kernel support vector machine (MKSVM). The process of our proposed technique is calculated based on the accuracy, sensitivity, specificity, precision, recall and F-measure. Here, for test analysis, the some datasets used i.e. Cleveland, Hungarian and Switzerland etc., that are given based on the UCI machine learning repository. The experimental outcome show that our presented technique is went better than the accuracy of 97.68%. This is for the Cleveland dataset when related with existing hybrid kernel support vector machine (HKSVM) method achieved 96.03% and optimal rough fuzzy classifier obtained 62.25%. The implementation of the proposed method is done by MATLAB platform.


In today’s modern world, the human beings are affected with heart disease irrespective of the age. With the advancement of technological growth, predicting the availability of Heart diseases still remains a challenging issue. The difficulty of predicting the heart disease prevails due to the lack of availability of the symptoms. According to World Health Organization, 33% of population died due to heart diseases. For this, the diagnosis of heart diseases is made by complex combination of clinical data. With this overview, we have used Heart Disease Prediction dataset extracted from UCI Machine Learning Repository for predicting the level of heart disease. The prediction of heart disease classes are achieved in four ways. Firstly, the data set is preprocessed with Feature Scaling and Missing Values. Secondly, the raw data set is fitted to classifiers like logistic regression, KNN classifier, Support Vector Machine, Kernel Support Vector Machine, Naive Bayes, Random Forest and Decision Tree classifiers. Third, the raw data set is subjected to dimensionality reduction using Principal Component Analysis to project the dataset with important components. The dimensionality PCA reduced data set is fitted to the above-mentioned classifiers. Fourth, the performance comparison of raw data set and PCA reduced data set is done by analyzing the performance metrics like Precision, Recall, Accuracy and F-score. The implementation is done using python language under Spyder platform with Anaconda Navigator. Experimental results shows that Random forest is found to be effective with the accuracy of 89% without applying PCA, 85% with five component PCA and 86% with seven component PCA.


Author(s):  
Tamilarasi Suresh ◽  
Tsehay Admassu Assegie ◽  
Subhashni Rajkumar ◽  
Napa Komal Kumar

Heart disease is one of the most widely spreading and deadliest diseases across the world. In this study, we have proposed hybrid model for heart disease prediction by employing random forest and support vector machine. With random forest, iterative feature elimination is carried out to select heart disease features that improves predictive outcome of support vector machine for heart disease prediction. Experiment is conducted on the proposed model using test set and the experimental result evidently appears to prove that the performance of the proposed hybrid model is better as compared to an individual random forest and support vector machine. Overall, we have developed more accurate and computationally efficient model for heart disease prediction with accuracy of 98.3%. Moreover, experiment is conducted to analyze the effect of regularization parameter (C) and gamma on the performance of support vector machine. The experimental result evidently reveals that support vector machine is very sensitive to C and gamma.


2021 ◽  
Author(s):  
Karunakaran Velswamy ◽  
Rajasekar Velswamy ◽  
Iwin Thanakumar Joseph Swamidason

Abstract Now-a-days a healthcare field produces a huge amount of data, for processing those data some efficient techniques are required. In this paper, a classification model is developed for heart disease prediction and the attribute selection is carried out through a modified bee algorithm. The prediction of heart disease through models will help the practitioners to make a precise decision about patient health. Heart disease dataset is obtained from the UCI repository. Dataset consists of 76 features and all those seventy-six features have not contributed equal information during the time classification. In the entire attributes, some of the attributes have contributed a large amount of information at the time of classification and some of the attributes have contributed only a small amount of information during the classification task. In this paper, a modified bee algorithm is used to identify the best subset of features from the entire features in the dataset i.e., in the training phase of classification only retain those features that are contributing more information during classification and it will reduce the training time of classifiers. The experiment is analyzed with a obtained reduced subset of features by using the following classifiers such as Support Vector Machine, Navie bayes, Decision tree and Random forest. The experimental result shows that the Support Vector Machine classifier will provide a good classification accuracy, true positive rate, true negative rate, false positive rate and false negative rate compared to Navie bayes and Random forest tree classifier.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Parvathaneni Rajendra Kumar ◽  
Suban Ravichandran ◽  
Satyala Narayana

AbstractObjectivesThis research work exclusively aims to develop a novel heart disease prediction framework including three major phases, namely proposed feature extraction, dimensionality reduction, and proposed ensemble-based classification.MethodsAs the novelty, the training of NN is carried out by a new enhanced optimization algorithm referred to as Sea Lion with Canberra Distance (S-CDF) via tuning the optimal weights. The improved S-CDF algorithm is the extended version of the existing “Sea Lion Optimization (SLnO)”. Initially, the statistical and higher-order statistical features are extracted including central tendency, degree of dispersion, and qualitative variation, respectively. However, in this scenario, the “curse of dimensionality” seems to be the greatest issue, such that there is a necessity of dimensionality reduction in the extracted features. Hence, the principal component analysis (PCA)-based feature reduction approach is deployed here. Finally, the dimensional concentrated features are fed as the input to the proposed ensemble technique with “Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN)” with optimized Neural Network (NN) as the final classifier.ResultsAn elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques.ConclusionsFrom the experiment outcomes, it is proved that the accuracy of the proposed work with the proposed feature set is 5, 42.85, and 10% superior to the performance with other feature sets like central tendency + dispersion feature, central tendency qualitative variation, and dispersion qualitative variation, respectively.ResultsFinally, the comparative evaluation shows that the presented work is appropriate for heart disease prediction as it has high accuracy than the traditional works.


2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


Deriving the methodologies to detect heart issues at an earlier stage and intimating the patient to improve their health. To resolve this problem, we will use Machine Learning techniques to predict the incidence at an earlier stage. We have a tendency to use sure parameters like age, sex, height, weight, case history, smoking and alcohol consumption and test like pressure ,cholesterol, diabetes, ECG, ECHO for prediction. In machine learning there are many algorithms which will be used to solve this issue. The algorithms include K-Nearest Neighbour, Support vector classifier, decision tree classifier, logistic regression and Random Forest classifier. Using these parameters and algorithms we need to predict whether or not the patient has heart disease or not and recommend the patient to improve his/her health.


2021 ◽  
Vol 11 (12) ◽  
pp. 3174-3180
Author(s):  
Guanghui Wang ◽  
Lihong Ma

At present, heart disease not only has a significant impact on the quality of human life but also poses a greater impact on people’s health. Therefore, it is very important to be able to diagnose heart disease as early as possible and give corresponding treatment. Heart image segmentation is the primary operation of intelligent heart disease diagnosis. The quality of segmentation directly determines the effect of intelligent diagnosis. Because the running time of image segmentation is often longer, coupled with the characteristics of cardiac MR imaging technology and the structural characteristics of the cardiac target itself, the rapid segmentation of cardiac MRI images still has challenges. Aiming at the long running time of traditional methods and low segmentation accuracy, a medical image segmentation (MIS) method based on particle swarm optimization (PSO) optimized support vector machine (SVM) is proposed, referred to as PSO-SVM. First, the current iteration number and population number in PSO are added to the control strategy of inertial weight λ to improve the performance of PSO inertial weight λ. Find the optimal penalty coefficient C and γ in the gaussian kernel function by PSO. Then use the SVM method to establish the best classification model and test the data. Compared with traditional methods, this method not only shortens the running time, but also improves the segmentation accuracy. At the same time, comparing the influence of traditional inertial weights on segmentation results, the improved method reduces the average convergence algebra and shortens the optimization time.


2019 ◽  
Vol 16 (5) ◽  
pp. 2623-2627
Author(s):  
V Kirankumar ◽  
Somula Ramasubbareddy ◽  
G Kannayaram ◽  
K Nikhil Kumar

Sign in / Sign up

Export Citation Format

Share Document