CO2 hydrogenation to methanol catalyzed by Ni5Ga3 metal alloy

2019 ◽  
Author(s):  
Yuhan Men ◽  
Xin Fang ◽  
Fan Wu ◽  
Ranjeet Singh ◽  
Penny Xiao ◽  
...  
Reactions ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 130-146
Author(s):  
Yali Yao ◽  
Baraka Celestin Sempuga ◽  
Xinying Liu ◽  
Diane Hildebrandt

In order to explore co-production alternatives, a once-through process for CO2 hydrogenation to chemicals and liquid fuels was investigated experimentally. In this approach, two different catalysts were considered; the first was a Cu-based catalyst that hydrogenates CO2 to methanol and CO and the second a Fisher–Tropsch (FT) Co-based catalyst. The two catalysts were loaded into different reactors and were initially operated separately. The experimental results show that: (1) the Cu catalyst was very active in both the methanol synthesis and reverse-water gas shift (R-WGS) reactions and these two reactions were restricted by thermodynamic equilibrium; this was also supported by an Aspen plus simulation of an (equilibrium) Gibbs reactor. The Aspen simulation results also indicated that the reactor can be operated adiabatically under certain conditions, given that the methanol reaction is exothermic and R-WGS is endothermic. (2) the FT catalyst produced mainly CH4 and short chain saturated hydrocarbons when the feed was CO2/H2. When the two reactors were coupled in series and the presence of CO in the tail gas from the first reactor (loaded with Cu catalyst) significantly improves the FT product selectivity toward higher carbon hydrocarbons in the second reactor compared to the standalone FT reactor with only CO2/H2 in the feed.


Author(s):  
P. D. Lobanov ◽  
O. N. Kashinsky ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin

An experimental study of dynamic processes during pulsed gas injection into quiescent liquids was performed. Both water and low melting temperature metal alloy were used as test liquids. Air and argon were used as gas phase. The test sections were vertical cylindrical columns 25 and 68 mm inner diameter. Measurements of flow parameters during gas injection were performed. Water – air experiments were performed at room temperature, the temperature of liquid metal alloy was 135 deg C. Time records of pressure in the liquid and in gas phase above the liquid were obtained. Measurements of liquid temperature and level of liquid surface were performed. It was shown that at pulse gas injection into liquid metal high amplitude pressure fluctuation may arise. Also the fluctuation variation of the free surface of the liquid may appear which are connected with the oscillations of the gas volume. Experimental data obtained may be used for verification & validation of modern CFD codes.


2020 ◽  
Vol 28 ◽  
pp. 873-885
Author(s):  
Alla V. Balueva ◽  
Ilia N. Dashevskiy ◽  
Jerry Magana

2021 ◽  
Vol 49 ◽  
pp. 101543
Author(s):  
Bin Qin ◽  
Zhimin Zhou ◽  
Shenggang Li ◽  
Peng Gao

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 735
Author(s):  
Yuhao Zheng ◽  
Chenghua Xu ◽  
Xia Zhang ◽  
Qiong Wu ◽  
Jie Liu

Alkali metal K- and/or Na-promoted FeCoCuAl catalysts were synthesized by precipitation and impregnation, and their physicochemical and catalytic performance for CO2 hydrogenation to light hydrocarbons was also investigated in the present work. The results indicate that Na and/or K introduction leads to the formation of active phase metallic Fe and Fe-Co crystals in the order Na < K < K-Na. The simultaneous introduction of Na and K causes a synergistic effect on increasing the basicity and electron-rich property, promoting the formation of active sites Fe@Cu and Fe-Co@Cu with Cu0 as a crystal core. These effects are advantageous to H2 dissociative adsorption and CO2 activation, giving a high CO2 conversion with hydrogenation. Moreover, electron-rich Fe@Cu (110) and Fe-Co@Cu (200) provide active centers for further H2 dissociative adsorption and O-C-Fe intermediate formation after adsorption of CO produced by RWGS. It is beneficial for carbon chain growth in C2+ hydrocarbons, including olefins and alkanes. FeCoCuAl simultaneously modified by K-Na exhibits the highest CO2 conversion and C2+ selectivity of 52.87 mol% and 89.70 mol%, respectively.


Sign in / Sign up

Export Citation Format

Share Document