Formation Time, Magma Source and Mineralization in the Zhaojinggou Nb-Ta Deposit, Inner Mongolia: Evidence from Columbite-Group Minerals U-Pb Dating, Rock and Mineral Geochemistry of the Amazonite Granitic Pegmatite

2021 ◽  
Author(s):  
Xue Li ◽  
Keyong Wang ◽  
Jitian Zhang ◽  
Genyi Liu ◽  
Dong Ma ◽  
...  
2020 ◽  
Vol 55 (10) ◽  
pp. 6841-6859
Author(s):  
Min Lin ◽  
Shengyao Yu ◽  
Changqian Ma ◽  
Xilin Zhao ◽  
Yujuan Li ◽  
...  

2019 ◽  
Vol 23 (2) ◽  
pp. 133-146
Author(s):  
Chen Wang ◽  
Liu Jianchao ◽  
Zhang Haidong ◽  
Ge Jiakun ◽  
Xi Zhixuan ◽  
...  

The Wuhaolai mafic complex is located in the north margin of the North China Craton (NCC), Inner Mongolia. To discuss the mineralogical features, magma evolution process, and tectonic setting of the complex, we analyzed the geochemical compositions of clinopyroxene and hornblende using an electron probe. The results revealed that the parental magma of this complex belonged to the intraplate alkaline basalt series. The normal zoning texture and the relation between Mg# and FeO, Al2O3, CaO, Na2O, SiO2 and Cr2O3 suggested that the clinopyroxenes of pyroxenite and gabbro crystallized from the same parental magma. The similar CaO content of clinopyroxenes indicated that the parental magma of the Wuhaolai complex may have suffered crustal contamination. Furthermore, the characteristics of hornblende demonstrated that the magma source was modified by fluids derived from subducted slab. Based on the value of Kdcpx (0.23–0.27), the equilibrium melt with clinopyroxene exhibited a relatively low Mg# (43–53), indicating that the parental magma was derived from the lithospheric mantle and underwent crystal fractionation. The gabbro crystallization temperature and pressure was found to be lower than that of pyroxenite, indicating that gabbro was formed at a lower depth than that of pyroxenite. Combining the tectonic setting discrimination diagram of clinopyroxene with the results of previous studies on the late Paleozoic intrusions near the research area, we proposed that the Wuhaolai complex was formed in an intraplate environment. The magma source was modified by fluids derived from the subducted slab during the subduction of the Paleo-Asian Ocean (PAO). After the PAO closure, the parental magma of the Wuhaolai complex was produced by the partial melting of the enriched lithospheric mantle


Sign in / Sign up

Export Citation Format

Share Document