Effect of Recycled Concrete Aggregate with Different Degrees of Initial Alkali–Aggregate Reaction Damage on the Mechanical Behavior and Porosity of Self-Compacting Recycled Aggregate Concrete

2022 ◽  
Author(s):  
Haoyu Wang ◽  
Ding Nie ◽  
Pengfei Li ◽  
Duoyin Wang ◽  
Chengzhi Wang ◽  
...  
2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2020 ◽  
Vol 991 ◽  
pp. 101-108
Author(s):  
Sallehan Ismail ◽  
Mahyuddin Ramli

This paper presents a study that aimed to assess the chloride penetration depth of recycled aggregate concrete (RAC) modified by using treated coarse recycled concrete aggregate (RCA), adding polyolefin (PO) or polypropylene (PP) fibre and comparing with normal concrete. The coupling effects of the treated RCA and fibres on the chloride penetration of RAC were analysed after two different curing regimes (i.e. normal and seawater) and tested at different curing ages (i.e. 90, 180 and 300 days). Results showed that the inclusion of treated coarse RCA can reduce porosity, thereby decreasing the chloride penetration of RAC. However, the coupling effects of treated coarse RCA and fibre, especially on the use of PO fibre, can enhance the results.


2020 ◽  
Vol 23 (15) ◽  
pp. 3351-3369 ◽  
Author(s):  
Simret T Deresa ◽  
Jinjun Xu ◽  
Cristoforo Demartino ◽  
YeongAe Heo ◽  
Zhi Li ◽  
...  

This article presents a comprehensive and critical review of the structural performances of reinforced recycled aggregate concrete beams and columns based on experimental results reported in the literature. Extensive data sets collected from the literature are categorized to investigate the effects on the local and global structural behavior. First, the flexural and shear response of reinforced recycled aggregate concrete beams is discussed. The structural performances are reviewed focusing on the main geometric and material variables such as the recycled concrete aggregate replacement ratio, the longitudinal reinforcement ratio, the transverse reinforcement ratio, and the shear span-to-depth ratio. Then, the behavior of reinforced recycled aggregate concrete columns under concentric and eccentric compressive loads and the seismic performance under low cyclic loading are discussed. The similarities and the differences between reinforced recycled aggregate concrete and reinforced natural aggregate concrete beams and columns are highlighted. The need for further research is pointed out at the end of the article. The results reported in this review clearly indicate that reinforced recycled aggregate concrete beams and columns with various recycled concrete aggregate replacement ratios have comparable or slightly lower structural performances to the reinforced natural aggregate concrete ones indicating the feasibility of recycled concrete aggregate for structural applications.


2013 ◽  
Vol 811 ◽  
pp. 249-253 ◽  
Author(s):  
Wei Li ◽  
Hai Ying Zhang

Experiments on influence of species of aggregate and mixing method on interfacial zone in recycled aggregate concrete were investigated. SEM observations revealed that a recycle normal-strength concrete aggregate consist of loose and porous interfacial structure, whereas a recycled high performance concrete (HPC) aggregate and a triple mixing (TM) consist mainly of dense hydrates. Various admixtures on ITZ was produced that consumed CH in the pore, modified attached cement mortar. Strength of recycled concrete was explained by interaction between cements paste and recycled aggregate. The result verified that the relatively dense pore structure of the recycled concrete benefit to development of mechanical properties.


2020 ◽  
Vol 15 (1) ◽  
pp. 65-78
Author(s):  
Mohammed Abed ◽  
Rita Nemes

Abstract The mechanical and physical properties of the crushed aggregate have been studied. The properties of crushed aggregate, which produced from recycled aggregate concrete is not discussed in the literature yet despite it could be a choice in some circumstances like in case of demolishing the structures that already constructed by recycled aggregate concrete. Twenty-two types of self-compacting high-performance concrete made by coarse natural aggregate and coarse recycle concrete aggregate have been crushed and their properties have been studied. The main findings of the present study that, the Los Angeles index and water absorption of crushed aggregate is affected by the coarse recycled concrete aggregate dosage in its parent concrete, as well as, incorporating cement replacing materials in parent concrete help to enhance the abrasion resistance of crushed aggregate.


2020 ◽  
Vol 12 (24) ◽  
pp. 10278
Author(s):  
Nikola Tošić ◽  
Snežana Marinković ◽  
Yahya Kurama

Recycled aggregate concrete (RAC), i.e., concrete produced with recycled concrete aggregate (RCA) has been heavily investigated recently, and the structural design of RAC is entering into design codes. Nonetheless, the service load deflection behavior of RAC remains a challenge due to its larger shrinkage and creep, and lower modulus of elasticity. A novel solution to this challenge is the use of layered concrete, i.e., casting of horizontal layers of different concretes. To investigate the potential benefits and limits of layered concrete, this study contains a numerical parametric assessment of the time-dependent sustained service load deflections and environmental impacts of homogeneous and layered NAC and RAC one-way slabs. Four types of reinforced concrete slabs were considered: homogeneous slabs with 0%, 50% and 100% of coarse RCA (NAC, RAC50 and RAC100, respectively) and layered L-RAC100 slabs with the bottom and top halves consisting of RAC100 and NAC, respectively. In the deflection study, different statical systems, concrete strength classes and relative humidity conditions were investigated. The results showed that the layered L-RAC100 slabs performed as well as, or even better than, the NAC slabs due to the differential shrinkage between the layers. In terms of environmental performance, evaluated using a “cradle-to-gate” Life Cycle Assessment approach, the L-RAC100 slabs also performed as well as, or slightly better than, the NAC slabs. Therefore, layered NAC and RAC slabs can be a potentially advantageous solution from both structural and environmental perspectives.


2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Mirjana Malešev ◽  
Vlastimir Radonjanin ◽  
Gordana Broćeta

Following an example of the world's great powers that developed the recycling industry after natural disasters and wars, the paper points to the possibility of using large quantities of construction and demolition waste, generated as a result of the recent floods in the BiH and Serbia. Based on the years of extensive experimental research, and the research conducted by eminent experts, an overview is provided of the most basic properties and application of recycled aggregate concrete. It has been shown that the application of coarse recycled concrete aggregate, as the component materials in the concrete mixtures, it is possible to produce structural concrete that can be satisfactory and even with high quality, which primarily depends on the characteristics of crushed demolished concrete.


2021 ◽  
Vol 17 (4) ◽  
pp. 306-311
Author(s):  
S.A. Alabi ◽  
C. Arum

The increasing demand, diminishing supplies, and growing pressure on natural resources have necessitated recycling and reusing waste. Several kinds of research have been done on the reuse and recycling of debris from building projects. Thus, with a view to the reuse of waste materials, the elimination of environmental contamination, the reduction of overhead costs of concrete, and the extension of the service life of concrete structures, this research aimed to study the feasibility of utilizing recycled concrete aggregate (RCA) with constant inclusion of waste steel fibre (LWSF) in concrete by evaluating its workability, compressive and splitting tensile strengths. A concrete mix ratio of 1:2:4 by weight of cement, sand, and granite was adopted with a water-cement ratio of 0.45. Five different concrete mixes were prepared in this study; one normal aggregate concrete (NAC) and four (4) other mixes with 25%, 50%, 75%, and 100% recycled aggregate content with a constant 1.5% addition of LWSF. The result of workability shows a reduction with an increase in the percentage replacement level. The recycled aggregate concrete (RAC) was characterized by lower compressive strength as compared with the NAC. When the replacement ratio increased from 25% to 50%, a significant reduction of about 14% and 30% were observed in the compressive strength at 7-days, but at 28-days slight increase in the compressive strength was observed. Also, a decrease in splitting tensile strength as the percentage replacement of crushed granite (CG) with RCA is increased was observed. Overall, the findings showed that the RAC-containing LWSF is environmentally sustainable and would significantly reduce the global greenhouse impact and building materials' overall quality. Keywords: Recycled concrete, lathe waste, steel fibre, compressive strength, tensile strength


2018 ◽  
Vol 68 (330) ◽  
pp. 158 ◽  
Author(s):  
P. Rattanachu ◽  
I. Karntong ◽  
W. Tangchirapat ◽  
C. Jaturapitakkul ◽  
P. Chindaprasirt

This research aimed to use of bagasse ash as a cement replacement in high-strength recycled aggregate concrete (HS-RAC). Crushed limestone was replaced with 100% recycled concrete aggregate (RCA) and the ground bagasse ash (GBA) was used to partially replace ordinary Portland cement (OPC) at 20, 35 and 50%wt of binder to cast HS-RAC. The results indicated that the replacing of crushed limestone with RCA had a negative impact on the properties of the concrete. Increasing the amount of GBA in HS-RAC resulted in a decrease in density and an increase in the volume of permeable pore space. The concrete mixtures prepared with 20%wt GBA replacement of OPC promoted greater the compressive strength than the conventional concrete (CT concrete) at 90 days or more. HS-RAC with GBA (up to 50%) was more durable in terms of chloride ion penetration resistance, although it had lower compressive strength than the CT concrete.


Sign in / Sign up

Export Citation Format

Share Document