scholarly journals 1P001 Construction of an expression system of canine milk lysozyme in the metylotrophic yeast Pichia pastoris

2004 ◽  
Vol 44 (supplement) ◽  
pp. S30
Author(s):  
D. Akieda ◽  
T. Aizawa ◽  
M. Yasui ◽  
Y. Nonaka ◽  
M. Watanabe ◽  
...  
1995 ◽  
Vol 73 (S1) ◽  
pp. 891-897 ◽  
Author(s):  
James M. Cregg ◽  
David R. Higgins

The methanol-utilizing yeast Pichia pastoris has been developed as a host system for the production of heterologous proteins of commercial interest. An industrial yeast selected for efficient growth on methanol for biomass generation, P. pastoris is readily grown on defined medium in continuous culture at high volume and density. A unique feature of the expression system is the promoter employed to drive heterologous gene expression, which is derived from the methanol-regulated alcohol oxidase I gene (AOX1) of P. pastoris, one of the most efficient and tightly regulated promoters known. The strength of the AOX1 promoter results in high expression levels in strains harboring only a single integrated copy of a foreign-gene expression cassette. Levels may often be further enhanced through the integration of multiple cassette copies into the P. pastoris genome and strategies to construct and select multicopy cassette strains have been devised. The system is particularly attractive for the secretion of foreign-gene products. Because P. pastoris endogenous protein secretion levels are low, foreign secreted proteins often appear to be virtually the only proteins in the culture broth, a major advantage in processing and purification. Key words: heterologous gene expression, methylotrophic yeast, Pichia pastoris, secretion, glycosylation.


2019 ◽  
Vol 155 ◽  
pp. 43-47 ◽  
Author(s):  
Quan Chen ◽  
Yuhang Zhou ◽  
Jianli Yu ◽  
Wenshuai Liu ◽  
Fei Li ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Mikhail A. Tsygankov ◽  
Marina V. Padkina

Background. Yeast Pichia pastoris is successfully used in biotechnology, with their help synthesized various compounds. Promoters are a key factor in the productivity of an expression system, since they determine the expression level of a heterologous gene. The aim of our work was to study the promoter regions of the PpKAR2 and PpPDI1 genes and to evaluate their use for effective expression of heterologous genes. Materials and Methods. To evaluate the activity of promoters, we used a reporter system based on the structural gene of acid phosphatase of yeast Saccharomyces cerevisiae – PHO5. To determine the effect of overproduction of native and heterologous protein on the activity of the promoters under study, we used the producer strains of P. pastoris protein disulfide isomerase and maize delta-zein. To evaluate the effectiveness of the use of the promoters under study for the expression of heterologous genes, we have expressed under their control a gene encoding human interferon-alpha16. Results. The promoters of the yeast genes – PpKAR2 and PpPDI1 were cloned. Their activity was compared with the promoter of the PpAOX1 gene in the native strains, as well as in strains with overproduction of native and heterologous proteins. Under the control of these promoters, the gene encoding human interferon-alpha 16 is expressed. Conclusion. The promoters studied were weaker than the promoter of the AOX1 gene, but increase their activity in response to the production of heterologous proteins and can be used to express hete­rologous genes.


2011 ◽  
Vol 77 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kimihiko Mizutani ◽  
Soshi Yoshioka ◽  
Yukiko Mizutani ◽  
So Iwata ◽  
Bunzo Mikami

2000 ◽  
Vol 28 (4) ◽  
pp. 353-357 ◽  
Author(s):  
J. Myllyharju ◽  
M. Nokelainen ◽  
A. Vuorela ◽  
K. I. Kivirikko

An efficient expression system for recombinant human collagens will have numerous scientific and medical applications. However, most recombinant systems are unsuitable for this purpose, as they do not have sufficient prolyl 4-hydroxylase activity. We have developed methods for producing the three major fibril-forming human collagens, types I, II and III, in the methyl-otrophic yeast Pichia pastoris. These methods are based on co-expression of procollagen polypeptide chains with the α- and β-subunits of prolyl 4-hydroxylase. The triple-helical type-I, -II and -III procollagens were found to accumulate predominantly within the endoplasmic reticulum of the yeast cells and could be purified from the cell lysates by a procedure that included a pepsin treatment to convert the procollagens into collagens and to digest most of the non-collagenous proteins. All the purified recombinant collagens were identical in 4-hydroxyproline content with the corresponding non-recombinant human proteins, and all the recombinant collagens formed native-type fibrils. The expression levels using single-copy integrants and a 2 litre bioreactor ranged from 0.2 to 0.6 g/l depending on the collagen type.


Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17080-17091
Author(s):  
Xinggang Chen ◽  
Zhuang Tian ◽  
Haina Cheng ◽  
Gang Xu ◽  
Hongbo Zhou

The Cu2+ first bound to the outer mannan and finally entered the cytoplasm. During the whole adsorption process, the number of adsorption sites in the outer and middle cell walls was the largest, and then gradually decreased.


Author(s):  
Lisa Klug ◽  
Pablo Tarazona ◽  
Clemens Gruber ◽  
Karlheinz Grillitsch ◽  
Brigitte Gasser ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1379-1391
Author(s):  
Monique A Johnson ◽  
Hans R Waterham ◽  
Galyna P Ksheminska ◽  
Liubov R Fayura ◽  
Joan Lin Cereghino ◽  
...  

Abstract We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.


Sign in / Sign up

Export Citation Format

Share Document