scholarly journals A Combination of Artificial Neural Network and Artificial Immune System for Virus Detection

Author(s):  
Mai Trong Khang ◽  
Vu Thanh Nguyen ◽  
Tuan Dinh Le

In this paper, we propose an Artificial Neural Immune Network (ANIN) for virus detection. ANIN is a combination of Artificial Neural Network (ANN) and Artificial Immune Network (AiNet). In ANIN, each ANN is considered as a detector. A pool of initial detectors then undergoes a mature process, called AiNet, to improve its recognizing ability. Thus, more than one ANN objects can cooperate to detect malicious code. The experimental results show that ANIN can achieve a detection rate of 87.98% on average with an acceptable false positive rate.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kishore Rajagopalan ◽  
Suresh Babu

Abstract Background A proposed computer aided detection (CAD) scheme faces major issues during subtle nodule recognition. However, radiologists have not noticed subtle nodules in beginning stage of lung cancer while a proposed CAD scheme recognizes non subtle nodules using x-ray images. Method Such an issue has been resolved by creating MANN (Massive Artificial Neural Network) based soft tissue technique from the lung segmented x-ray image. A soft tissue image recognizes nodule candidate for feature extortion and classification. X-ray images are downloaded using Japanese society of radiological technology (JSRT) image set. This image set includes 233 images (140 nodule x-ray images and 93 normal x-ray images). A mean size for a nodule is 17.8 mm and it is validated with computed tomography (CT) image. Thirty percent (42/140) abnormal represents subtle nodules and it is split into five stages (tremendously subtle, very subtle, subtle, observable, relatively observable) by radiologists. Result A proposed CAD scheme without soft tissue technique attained 66.42% (93/140) sensitivity and 66.76% accuracy having 2.5 false positives per image. Utilizing soft tissue technique, many nodules superimposed by ribs as well as clavicles have identified (sensitivity is 72.85% (102/140) and accuracy is 72.96% at one false positive rate). Conclusion In particular, a proposed CAD system determine sensitivity and accuracy in support of subtle nodules (sensitivity is 14/42 = 33.33% and accuracy is 33.66%) is statistically higher than CAD (sensitivity is 13/42 = 30.95% and accuracy is 30.97%) scheme without soft tissue technique. A proposed CAD scheme attained tremendously minimum false positive rate and it is a promising technique in support of cancerous recognition due to improved sensitivity and specificity.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-25
Author(s):  
Dung Hoang Le ◽  
Nguyen Thanh Vu ◽  
Tuan Dinh Le

This paper proposes a smart system of virus detection that can classify a file as benign or malware with high accuracy detection rate. The approach is based on the aspects of the artificial immune system, in which an artificial immune network is used as a pool to create and develop virus detectors that can detect unknown data. Besides, a deep learning model is also used as the main classifier because of its advantages in binary classification problems. This method can achieve a detection rate of 99.08% on average, with a very low false positive rate.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document