scholarly journals Influence of laser pulse on plane waves propagating in a thermoelastic medium with micro-temperature under the DPL model

Author(s):  
Adnan Jahangir ◽  
Adiya Dar ◽  
Mohamed I. A. Othman
2016 ◽  
Vol 12 (2) ◽  
pp. 326-344 ◽  
Author(s):  
Mohamed Ibrahim A Othman ◽  
Mohamed I. M. Hilal

Purpose – The purpose of this paper is to investigate the influence of the gravity and the magnetic fields on the plane waves in a homogenous, linear and isotropic thermoelastic medium subjected to the laser pulse heating. Design/methodology/approach – The problem has been solved analytically and numerically by using the normal mode analysis. Findings – Numerical results for the temperature, the displacement components, the stress components and the volume fraction were presented graphically and analyzed the results. The graphical results indicate that the effect of gravity and magnetic fields are observable physical effects on the porous thermoelastic material heated by a laser pulse. Comparisons are made with the results in the absence and presence of the gravity and the magnetic fields, also at various times. Originality/value – In the present work, the authors shall formulate a 2-D problem for the propagation of plane waves on the porous thermoelastic material influenced by the gravity and the magnetic fields subjected to a laser pulse heating act as a thermal shock. A comparison is also made between the two types II and III of Green-Naghdi theory in the absence and the presence of the gravity and the magnetic fields. Such problems are very important in many dynamical systems.


2016 ◽  
Vol 227 (12) ◽  
pp. 3571-3583 ◽  
Author(s):  
Mohamed I. A. Othman ◽  
Ramadan S. Tantawi

2012 ◽  
Vol 42 (3) ◽  
pp. 33-60 ◽  
Author(s):  
Baljeet Singh ◽  
Anand Yadav

Reflection of Plane Waves in a Rotating Transversly Isotropic Magneto-Thermoelastic Solid Half-SpaceThe governing equations of a rotating transversely isotropic magneto-thermoelastic medium are solved to obtain the velocity equation, which indicates the existence of three quasi plane waves. Reflection of these plane waves from a stress-free thermally insulated surface is studied to obtain the reflection coefficients of various reflected waves. The effects of anisotropy, rotation, thermal and magnetic fields are shown graphically on these coefficients.


2016 ◽  
Vol 12 (4) ◽  
pp. 748-778 ◽  
Author(s):  
Rajneesh Kumar ◽  
Richa Vohra ◽  
M.G. Gorla

Purpose The purpose of this paper is to study the reflection of plane waves in thermoelastic medium with double porosity structure. Design/methodology/approach A two-dimensional model is considered of an isotropic thermoelastic half-space with double porosity. Thermoelasticity with one relaxation time given by Lord and Shulman (1967) has been used to study the problem. It is found that there exists four coupled longitudinal waves, namely, longitudinal wave (P), longitudinal thermal wave (T), longitudinal volume fractional wave corresponding to pores (PVI) and longitudinal volume fractional wave corresponding to fissures (PVII), in addition to an uncoupled transverse wave (SV). Findings The formulae for amplitude ratios of various reflected waves are obtained in closed form. It is found that these amplitude ratios are functions of angle of incidence. Effect of porosity and thermal relaxation time is shown graphically on the amplitude ratios with angle of incidence for a particular model. Originality/value Reflection of plane waves is of great practical importance. There are many organic and inorganic deposits beneath the earth surface. Wave propagation is the simplest and most economical technique to detect these. The model discussed in the present paper can provide useful information for experimental researchers working in the field of geophysics and earthquake engineering, along with seismologist working in the field of mining tremors and drilling into the crust of the earth.


Sign in / Sign up

Export Citation Format

Share Document