Some Simulation Results with Input - Output Allocation Model

Author(s):  
A. K. Sengupta
2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Mohammadreza Kasaei ◽  
Ali Ahmadi ◽  
Nuno Lau ◽  
Artur Pereira

AbstractBiped robots are inherently unstable because of their complex kinematics as well as dynamics. Despite many research efforts in developing biped locomotion, the performance of biped locomotion is still far from the expectations. This paper proposes a model-based framework to generate stable biped locomotion. The core of this framework is an abstract dynamics model which is composed of three masses to consider the dynamics of stance leg, torso, and swing leg for minimizing the tracking problems. According to this dynamics model, we propose a modular walking reference trajectories planner which takes into account obstacles to plan all the references. Moreover, this dynamics model is used to formulate the controller as a Model Predictive Control (MPC) scheme which can consider some constraints in the states of the system, inputs, outputs, and also mixed input-output. The performance and the robustness of the proposed framework are validated by performing several numerical simulations using MATLAB. Moreover, the framework is deployed on a simulated torque-controlled humanoid to verify its performance and robustness. The simulation results show that the proposed framework is capable of generating biped locomotion robustly.


2018 ◽  
Vol 41 (5) ◽  
pp. 1323-1330 ◽  
Author(s):  
Milad Malekzadeh ◽  
Alireza Khosravi ◽  
Mehdi Tavan

This paper addresses the problem of state and parameter estimation for a class of uncertain DC-DC such converters as DC–DC boost, buck and buck-boost converters. Using the advantages of Immersion and Invariance technique with input-output filtered transformation, a proper immersion and auxiliary dynamic filter is constructed in the proposed estimator. Uniform global asymptotic convergence of the estimator is proven for the system with parametric uncertainties. In the presence of both output and state dynamics perturbations, the performance of the proposed estimator has been theoretically analyzed and verified by means of simulation results. In addition, the effectiveness of this scheme is validated via experimental test for DC-DC boost converter.


2013 ◽  
Vol 744 ◽  
pp. 466-469 ◽  
Author(s):  
Bo Yang ◽  
Hui Zhao ◽  
Bo Dai

A new biaxial decoupled resonant micro-accelerometer is researched. The new biaxial resonant micro-accelerometer consists of four same tuning forking resonators, four pair of decoupled beams, four lever mechanisms and a proof mass. The decoupling between two orthogonal axes is realized by the decoupling beams, which will benefit to isolate two axes acceleration detection. The simulation is implemented to verify the basic principle by the Ansys. The simulation results prove that the effective frequencies of two acceleration sensitive modes are 3.699 kHz and 3.718 kHz separately. Two pair of resonator modes which are 23.893 kHz, 23.946 kHz, 26.974 kHz and 26.999 kHz separately have about 3kHz difference in frequency in order to prevent the mutual interference. And the interference modes are isolated with effective mode apparently. The input-output characteristic simulation results indicate the y-axis scale factor is 57.1Hz/g and the coupling output in the x-axis is 0.0148Hz/g, while the x-axis scale factor is 56.1Hz/g and the coupling output in the y-axis is 0.0073Hz/g, which proves that the new biaxial resonant micro-accelerometer is practicable and has an excellent decoupled performance.


1986 ◽  
Vol 18 (8) ◽  
pp. 1061-1076 ◽  
Author(s):  
F Harrigan ◽  
I McNicoll

There is a growing body of evidence which suggests that, used in conjunction with a suitable estimation method, the incorporation of good quality exogenous data can enhance the accuracy of simulated or updated regional input—output matrices. However, there has been little attempt to measure explicitly the accuracy of simulation results in relation to the data used in their estimation. Within the context of programming estimation procedure, comparable measures of the ‘quantity’ of exogenous data and the accuracy of simulation are developed in this paper. Subsequently, this framework is demonstrated using Scottish and Washington input—output tables.


Author(s):  
Sergio J. Torres-Mendez ◽  
Gokhan Gungor ◽  
Baris Fidan ◽  
Amir Khajepour

This work deals with the design and comparison of two adaptive position control schemes with a classical PID controller for fully constrained and redundant planar robots. First, a novel method based on inclusion of virtual cables facilitates the linear separation of the uncertain parameters from the input-output signals. Then, two Lyapunov based adaptive controllers based on the sliding mode and PD schemes are designed to compensate for the structure matrix uncertainties, which result from errors in the anchor point locations. Finally, the adaptive controllers are evaluated and compared with a classical PID controller through simulations for a desired 2D singularity-free pose of the mobile platform. The simulation results have shown that the adaptive PD control scheme has the best performance for both fully constrained and redundant cases.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Ahmed ◽  
Martino Ajangnay ◽  
Shamboul Mohamed ◽  
Matthew Dunnigan

Induction Motor (IM) speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC) to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC) schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation.


Author(s):  
Samir Bouzoualegh ◽  
El-Hadi Guechi ◽  
Ridha Kelaiaia

Abstract This paper presents a model predictive control (MPC) for a differential-drive mobile robot (DDMR) based on the dynamic model. The robot’s mathematical model is nonlinear, which is why an input–output linearization technique is used, and, based on the obtained linear model, an MPC was developed. The predictive control law gains were acquired by minimizing a quadratic criterion. In addition, to enable better tuning of the obtained predictive controller gains, torques and settling time graphs were used. To show the efficiency of the proposed approach, some simulation results are provided.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Patrick A. Naylor ◽  
Nikolay D. Gaubitch ◽  
Emanuël A. P. Habets

We address the measurement of reverberation in terms of the (DRR) in the context of the assessment of dereverberation algorithms for which we wish to quantify the level of reverberation before and after processing. The DRR is normally calculated from the impulse response of the reverberating system. However, several important dereverberation algorithms involve nonlinear and/or time-varying processing and therefore their effect cannot conveniently be represented in terms of modifications to the impulse response of the reverberating system. In such cases, we show that a good estimate of DRR can be obtained from the input/output signals alone using the Signal-to-Reverberant Ratio (SRR) only if the source signal is spectrally white and correctly normalized. We study alternative normalization schemes and conclude by showing a least squares optimal normalization procedure for estimating DRR using signal-based SRR measurement. Simulation results illustrate the accuracy of DRR estimation using SRR.


Sign in / Sign up

Export Citation Format

Share Document