scholarly journals A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions

2019 ◽  
Vol 2 (1) ◽  
pp. 25-44 ◽  
Author(s):  
S. Mohanasundaram ◽  
G. Suresh Kumar ◽  
Balaji Narasimhan

Abstract Groundwater level prediction and forecasting using univariate time series models are useful for effective groundwater management under data limiting conditions. The seasonal autoregressive integrated moving average (SARIMA) models are widely used for modeling groundwater level data as the groundwater level signals possess the seasonality pattern. Alternatively, deseasonalized autoregressive and moving average models (Ds-ARMA) can be modeled with deseasonalized groundwater level signals in which the seasonal component is estimated and removed from the raw groundwater level signals. The seasonal component is traditionally estimated by calculating long-term averaging values of the corresponding months in the year. This traditional way of estimating seasonal component may not be appropriate for non-stationary groundwater level signals. Thus, in this study, an improved way of estimating the seasonal component by adopting a 13-month moving average trend and corresponding confidence interval approach has been attempted. To test the proposed approach, two representative observation wells from Adyar basin, India were modeled by both traditional and proposed methods. It was observed from this study that the proposed model prediction performance was better than the traditional model's performance with R2 values of 0.82 and 0.93 for the corresponding wells' groundwater level data.

2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad Rafi ◽  
Mohammad Taha Wahab ◽  
Muhammad Bilal Khan ◽  
Hani Raza

Automatic Teller Machine (ATM) are still largely used to dispense cash to the customers. ATM cash replenishment is a process of refilling ATM machine with a specific amount of cash. Due to vacillating users demands and seasonal patterns, it is a very challenging problem for the financial institutions to keep the optimal amount of cash for each ATM. In this paper, we present a time series model based on Auto Regressive Integrated Moving Average (ARIMA) technique called Time Series ARIMA Model for ATM (TASM4ATM). This study used ATM back-end refilling historical data from 6 different financial organizations in Pakistan. There are 2040 distinct ATMs and 18 month of replenishment data from these ATMs are used to train the proposed model. The model is compared with the state-of- the-art models like Recurrent Neural Network (RNN) and Amazon’s DeepAR model. Two approaches are used for forecasting (i) Single ATM and (ii) clusters of ATMs (In which ATMs are clustered with similar cash-demands). The Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) are used to evaluate the models. The suggested model produces far better forecasting as compared to the models in comparison and produced an average of 7.86/7.99 values for MAPE/SMAPE errors on individual ATMs and average of 6.57/6.64 values for MAPE/SMAPE errors on clusters of ATMs.


Author(s):  
Mohammad Karim Ahmadzai

Wheat is the most important food crop in Afghanistan, whether consumed by the bulk of the people or used in various sectors. The problem is that Afghanistan has a significant shortfall of wheat between domestic production and consumption. Thus, the present study looks at the issue of meeting self-sufficiency for the whole population due to wheat shortages. To do so, we employ time series analysis, which can produce a highly exact short-run prediction for a significant quantity of data on the variables in question. The ARIMA models are versatile and widely utilised in univariate time series analysis. The ARIMA model combines three processes: I the auto-regressive (AR) process, (ii) the differencing process, and (iii) the moving average (MA) process. These processes are referred to as primary univariate time series models in statistical literature and are widely employed in various applications. Where predicting future wheat requirements is one of the most important tools that decision-makers may use to assess wheat requirements and then design measures to close the gap between supply and consumption. The present study seeks to forecast Production, Consumption, and Population for the period 2002-2017 and estimate the values of these variables between 2002 and 2017. (2018-2030).  


Author(s):  
Baidyanath Biswas

This chapter discusses the concepts of time-series applications and forecasting in the context of information systems security. The primary objective in such formulation is the training of the models followed by efficient prediction. Although economic and financial forecasting problems extensively use time-series, predicting software vulnerabilities is a novel idea. The chapter also provides appropriate guidelines for the implementation and adaptation of univariate time-series for information security. To achieve this, the authors focus on the following techniques: autoregressive (AR), moving average (MA), autoregressive integrated moving average (ARIMA), and exponential smoothing. The analysis considers a unique data set consisting of the publicly exposed software vulnerabilities, available from the U.S. Dept. of Homeland Security. The problem is presented first, followed by a general framework to identify the problem, estimate the best-fit parameters of that model, and conclude with an illustrative example from the above dataset to familiarize readers with the business problem.


Author(s):  
Sudip Singh

India, with a population of over 1.38 billion, is facing high number of daily COVID-19 confirmed cases. In this chapter, the authors have applied ARIMA model (auto-regressive integrated moving average) to predict daily confirmed COVID-19 cases in India. Detailed univariate time series analysis was conducted on daily confirmed data from 19.03.2020 to 28.07.2020, and the predictions from the model were satisfactory with root mean square error (RSME) of 7,103. Data for this study was obtained from various reliable sources, including the Ministry of Health and Family Welfare (MoHFW) and http://covid19india.org/. The model identified was ARIMA(1,1,1) based on time series decomposition, autocorrelation function (ACF), and partial autocorrelation function (PACF).


Water SA ◽  
2020 ◽  
Vol 46 (4 October) ◽  
Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Estimating groundwater level (GWL) fluctuations is a vital requirement in hydrology and hydraulic engineering, and is commonly addressed through artificial intelligence (AI) models. The purpose of this research was to estimate groundwater levels using new modelling methods. The implementation of two separate soft computing techniques, a multilayer perceptron neural network (MLPNN) and an M5 model tree (M5-MT), was examined. The models are used in the estimation of monthly GWLs observed in a shallow unconfined coastal aquifer. Data for the water level were collected from observation wells located near Ganjimatta, India, and used to estimate GWL fluctuation. To do this, two scenarios were provided to achieve optimal input variables for modelling the GWL at the present time. The input parameters applied for developing the proposed models were a monthly time-series of summed rainfall, the mean temperature (within its lag times that have an effect on groundwater), and historical GWL observations throughout the period 1996–2006. The efficiency of each proposed model for Ganjimatt was investigated in stages of trial and error. A performance evaluation showed that the M5-MT outperformed the MLPNN model in estimating the GWL in the aquifer case study. Based on the M5-MT approach, the development of this model gives acceptable results for the Indian coastal aquifers. It is recommended that water managers and decision makers apply these new methods to monitor groundwater conditions and inform future planning.


2015 ◽  
Vol 28 (19) ◽  
pp. 7489-7502 ◽  
Author(s):  
Mario Trottini ◽  
Maria Isabel ◽  
Vigo Aguiar ◽  
Santiago Belda Palazón

Abstract Given a time series, running trends analysis (RTA) involves evaluating least squares trends over overlapping time windows of L consecutive time points, with overlap by all but one observation. This produces a new series called the “running trends series,” which is used as summary statistics of the original series for further analysis. In recent years, RTA has been widely used in climate applied research as summary statistics for time series and time series association. There is no doubt that RTA might be a useful descriptive tool, but, despite its general use in applied research, precisely what it reveals about the underlying time series is unclear and, as a result, its interpretation is unclear too. This paper contributes to such interpretation in two ways: 1) an explicit formula is obtained for the set of time series with a given series of running trends, making it possible to show that running trends, alone, perform very poorly as summary statistics for univariate time series and time series association; and 2) an equivalence is established between RTA and the estimation of a (possibly nonlinear) trend component of the underlying time series using a weighted moving average filter. Such equivalence provides a solid ground for RTA implementation and interpretation/validation. In this respect, the authors propose as diagnostic tools for RTA 1) the plot of the original series, with RTA trend estimation superposed, 2) the average R2 value and the percentage of statistically significant running trends across windows, and 3) the plot of the running trends series with the corresponding confidence intervals.


2013 ◽  
Vol 17 (12) ◽  
pp. 4769-4787 ◽  
Author(s):  
J. P. Bloomfield ◽  
B. P. Marchant

Abstract. A new index for standardising groundwater level time series and characterising groundwater droughts, the Standardised Groundwater level Index (SGI), is described. The SGI builds on the Standardised Precipitation Index (SPI) to account for differences in the form and characteristics of groundwater level and precipitation time series. The SGI is estimated using a non-parametric normal scores transform of groundwater level data for each calendar month. These monthly estimates are then merged to form a continuous index. The SGI has been calculated for 14 relatively long, up to 103 yr, groundwater level hydrographs from a variety of aquifers and compared with SPI for the same sites. The relationship between SGI and SPI is site specific and the SPI accumulation period which leads to the strongest correlation between SGI and SPI, qmax, varies between sites. However, there is a consistent positive linear correlation between a measure of the range of significant autocorrelation in the SGI series, mmax, and qmax across all sites. Given this correlation between SGI mmax and SPI qmax, and given that periods of low values of SGI can be shown to coincide with previously independently documented droughts, SGI is taken to be a robust and meaningful index of groundwater drought. The maximum length of groundwater droughts defined by SGI is an increasing function of mmax, meaning that relatively long groundwater droughts are generally more prevalent at sites where SGI has a relatively long autocorrelation range. Based on correlations between mmax, average unsaturated zone thickness and aquifer hydraulic diffusivity, the source of autocorrelation in SGI is inferred to be dependent on dominant aquifer flow and storage characteristics. For fractured aquifers, such as the Cretaceous Chalk, autocorrelation in SGI is inferred to be primarily related to autocorrelation in the recharge time series, while in granular aquifers, such as the Permo–Triassic sandstones, autocorrelation in SGI is inferred to be primarily a function of intrinsic saturated flow and storage properties of aquifer. These results highlight the need to take into account the hydrogeological context of groundwater monitoring sites when designing and interpreting data from groundwater drought monitoring networks.


Sign in / Sign up

Export Citation Format

Share Document