scholarly journals Recent groundwater and lake-stage trends in Cape Cod National Seashore: relationships with sea level rise, precipitation, and air temperature

2018 ◽  
Vol 10 (4) ◽  
pp. 953-967
Author(s):  
Stephen M. Smith ◽  
Kelly C. Medeiros

AbstractHydrological features on Cape Cod, Massachusetts, USA, include groundwater, freshwater lakes, permanent and seasonal ponds, streams, and estuaries. Rainfall and evaporation/evapotranspiration have long been considered the dominant factors influencing both lake and groundwater levels in this sole-source, unconfined aquifer. However, increases in sea level may also have an effect, especially on this narrow peninsula with a sandy substrate of high permeability. In this study, we analyzed trends between 2000 and 2017 in eleven groundwater wells and nine kettle ponds situated with Cape Cod National Seashore (CCNS). We further explored relationships of these hydrologic variables with local precipitation, temperature and sea level during this period. The results suggest that while precipitation patterns influence seasonal and inter-annual variability, it appears that sea level rise (SLR) may be partially responsible for driving the longer-term trend of rising groundwater levels in several wells. Pond stages did not exhibit any statistically significant trends, and responded more to precipitation during this period of time. Notwithstanding, further acceleration of SLR, along with potential changes in precipitation patterns, can alter the freshwater hydrology of CCNS that may subsequently have biological, chemical, and physical effects throughout these systems.

2003 ◽  
Author(s):  
Erika S. Hammar-Klose ◽  
Elizabeth A. Pendleton ◽  
E. Robert Thieler ◽  
S. Jeffress Williams

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1934
Author(s):  
Adrienne Fung ◽  
Roger Babcock

Collection systems in coastal cities are often below the groundwater table, leading to groundwater infiltration (GWI) through defects such as cracks and poor lateral connections. Climate-change-induced sea level rise (SLR) will raise groundwater levels, increasing the head and thus the inflow. A method has been developed to predict GWI when groundwater levels change using calibration with sewershed flow monitoring data. The calibration results in a parameter that characterizes the porosity of the collection system. A case study is presented for a coastal city with reliable flow monitoring data for eight days that resulted in a large range of effective defect sizes (minimum 0.0044 to maximum 0.338 radians), however, the range of predicted future GWI in currently submerged pipes varied by only 12% from the mean. The mean effective defect predicts 70 to 200% increases in GWI due to SLR of 0.3 to 0.9 m (1 to 3 ft), respectively, for currently submerged pipes. Predicted additional GWI for pipes that will become submerged due to SLR will increase GWI to values that approach or exceed the current average dry weather flow. This methodology can be used for planning of infrastructure improvements to enhance resiliency in coastal communities.


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


2016 ◽  
Vol 39 (5) ◽  
pp. 1376-1385 ◽  
Author(s):  
Alana Hanson ◽  
Roxanne Johnson ◽  
Cathleen Wigand ◽  
Autumn Oczkowski ◽  
Earl Davey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document