Impact of climate change on water requirements and growth of potato in different climatic zones of Montenegro

2018 ◽  
Vol 9 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mirko Knežević ◽  
Ljubomir Zivotić ◽  
Nataša Čereković ◽  
Ana Topalović ◽  
Nikola Koković ◽  
...  

Abstract The impact of climate change on potato cultivation in Montenegro was assessed. Three scenarios (A1B, A1Bs and A2) for 2001–2030, 2071–2100 and 2071–2100, respectively, were generated by a regional climate model and compared with the baseline period 1961–1990. The results indicated an increase of temperature during the summer season from 1.3 to 4.8 °C in the mountain region and from 1 to 3.4 °C in the coastal zone. The precipitation decreased between 5 and 50% depending on the scenario, region and season. The changes in temperature and precipitation influenced phenology, yield and water needs. The impact was more pronounced in the coastal areas than in the mountain regions. The growing season was shortened 13.6, 22.9 and 29.7 days for A1B, A1Bs and A2, respectively. The increase of irrigation requirement was 4.0, 19.5 and 7.3 mm for A1B, A1Bs and A2, respectively. For the baseline conditions, yield reduction under rainfed cultivation was lower than 30%. For A1B, A1Bs and A2 scenarios, yield reductions were 31.0 ± 8.2, 36.3 ± 11.6 and 34.1 ± 10.9%, respectively. Possible adaptation measures include shifting of production to the mountain (colder) areas and irrigation application. Rainfed cultivation remains a viable solution when the anticipation of sowing is adopted.

2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


2021 ◽  
Author(s):  
Judit Carrillo ◽  
Albano González ◽  
Juan C. Pérez ◽  
Francisco J. Expósito ◽  
Juan P. Díaz

<p>Tourism is an essential sector of the economy of the Canary Islands. Tourism Climate Index (TCI) and Holiday Climate Index (HCI) are good indicators of environmental conditions for leisure activities. Regional climate model (RCM) has been addressed to analyze the impact of climate change on the indices of tourist areas. The initial and boundary conditions for future scenarios are prescribed through three CMIP5 models (GFDL, IPSL and MIROC)  surface and lateral boundary conditions within the Meteorological Research and Forecast (WRF), with a high resolution, 3x3 km. Two time periods (2030 – 2059, and 2070-2099) and two Representative Concentration Pathways (RCPs 4.5 and 8.5) are considered. Tourism indicators are projected to improve significantly during the winter and shoulder seasons, but will worsen in the summer months, including October, in the southeast, which is where hotels are currently located.</p>


2020 ◽  
Author(s):  
Francisco J M Costa ◽  
Fabien Forge ◽  
Jason Garred ◽  
João Paulo Pessoa

We investigate the extent to which climate change will result in insurable and uninsurable losses for farmers in India. Shifts in the distributions of temperature and precipitation may increase the volatility of farmers' yields, leading to rising but insurable risk, and/or reduce mean yields and thus cause permanent reductions in the returns to farming. We use a multi-run climate model to predict the future distribution of yields at the district level for sixteen major crops. For the average district, we project a sharp decline in mean agricultural revenue, but relatively small shifts in volatility. This is because weather draws resulting in extremely low agricultural revenue -- what had once been 1-in-100-year events -- are predicted to become the norm by the end of the century, implying substantial uninsurable losses from the changing climate.


Author(s):  
Alison Brown ◽  
Ag Stephens ◽  
Ben Rabb ◽  
Richenda Connell ◽  
Jon Upton

Abstract While a significant amount of attention surrounding climate change has focused on mitigation of the causes, there is growing interest and need to adapt to physical climate change impacts which are already being experienced and in anticipation of future changes. Changes in climate have the potential to create hazards in the oil and gas sector although vulnerabilities to these changes are often specific to asset types. Preparedness for climate change can help to reduce damaging effects from acute as well as chronic climate changes. This paper focuses on a simple approach developed to ensure that climate change is included in engineering design, by considering climate change risk and the uncertainty inherent in future projections of climate change into design requirements. It involves using the best available climate change data and an understanding of the relationships between asset performance and environmental (climate-related) conditions. The risk level associated with climate change for a specific asset is determined by consideration of the severity and confidence level of the climate change hazard, the exposure of the asset to the hazard, the vulnerability of the exposed asset to the hazard and the capacity of the asset to adapt to the hazard. The method considers the risk levels, the selection of climate model data, the ‘natural variability’ baseline period to be applied to the climate change data, the climate change model validation, the asset life time and specifically how to modify metocean design criteria to account for climate change to ensure both the ‘start of life’ criteria (typically derived from observed and hindcast data) and ‘end of life’ criteria (including an estimate for the impact of climate change at the end of the asset life) meet the required annual probability of exceedance.


2019 ◽  
Vol 141 ◽  
pp. 390-401 ◽  
Author(s):  
Pieter de Jong ◽  
Tarssio B. Barreto ◽  
Clemente A.S. Tanajura ◽  
Daniel Kouloukoui ◽  
Karla P. Oliveira-Esquerre ◽  
...  

Author(s):  
Amedée Chabi ◽  
Esdras Babadjidé Josué Zandagba ◽  
Ezekiel Obada ◽  
Eliezer Iboukoun Biao ◽  
Eric Adéchina Alamou ◽  
...  

Abstract. One of the major threats to water resources today remains climate change. The objective of this study is to assess the impact of climate change on water availability in Oueme catchment at Savè. Precipitation provided by three regional climate models (RCMs) was analyzed. Bias in these data was first corrected using the Empirical Quantile Mapping (EQM) method be for etheir use as input to hydrological models. To achieve the objective, six hydrological models were used (AWBM, ModHyPMA, HBV, GR4J, SimHyd and Hymod). In projection, the results showed that the AWBM model appears to be the best. The multi-model approach further improves model performance, with the best obtained with combinations of the models AWBM-ModHyPMA-HBV. The AWBM model showed a fairly good capability for simulating flows in the basin with only HIRHAM5 climate model data as input. Therefore, the simulation with the HIRHAM5 data as inputs to the five (05) hydrological models, showed flows that vary at the horizons (2025, 2055 and 2085) under the scenarios (RCP4.5 and RCP8.5). Indeed, this variation is largely due to anthropogenic greenhouse gas (GHG) emissions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Sign in / Sign up

Export Citation Format

Share Document