hydrological models
Recently Published Documents


TOTAL DOCUMENTS

1314
(FIVE YEARS 505)

H-INDEX

72
(FIVE YEARS 9)

2022 ◽  
Vol 26 (1) ◽  
pp. 71-89
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Jonas Jägermeyr ◽  
Ann van Griensven

Abstract. To date, most regional and global hydrological models either ignore the representation of cropland or consider crop cultivation in a simplistic way or in abstract terms without any management practices. Yet, the water balance of cultivated areas is strongly influenced by applied management practices (e.g. planting, irrigation, fertilization, and harvesting). The SWAT+ (Soil and Water Assessment Tool) model represents agricultural land by default in a generic way, where the start of the cropping season is driven by accumulated heat units. However, this approach does not work for tropical and subtropical regions such as sub-Saharan Africa, where crop growth dynamics are mainly controlled by rainfall rather than temperature. In this study, we present an approach on how to incorporate crop phenology using decision tables and global datasets of rainfed and irrigated croplands with the associated cropping calendar and fertilizer applications in a regional SWAT+ model for northeastern Africa. We evaluate the influence of the crop phenology representation on simulations of leaf area index (LAI) and evapotranspiration (ET) using LAI remote sensing data from Copernicus Global Land Service (CGLS) and WaPOR (Water Productivity through Open access of Remotely sensed derived data) ET data, respectively. Results show that a representation of crop phenology using global datasets leads to improved temporal patterns of LAI and ET simulations, especially for regions with a single cropping cycle. However, for regions with multiple cropping seasons, global phenology datasets need to be complemented with local data or remote sensing data to capture additional cropping seasons. In addition, the improvement of the cropping season also helps to improve soil erosion estimates, as the timing of crop cover controls erosion rates in the model. With more realistic growing seasons, soil erosion is largely reduced for most agricultural hydrologic response units (HRUs), which can be considered as a move towards substantial improvements over previous estimates. We conclude that regional and global hydrological models can benefit from improved representations of crop phenology and the associated management practices. Future work regarding the incorporation of multiple cropping seasons in global phenology data is needed to better represent cropping cycles in areas where they occur using regional to global hydrological models.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Raphael Schneider ◽  
Simon Stisen ◽  
Anker Lajer Højberg

About half of the Danish agricultural land is drained artificially. Those drains, mostly in the form of tile drains, have a significant effect on the hydrological cycle. Consequently, the drainage system must also be represented in hydrological models that are used to simulate, for example, the transport and retention of chemicals. However, representation of drainage in large-scale hydrological models is challenging due to scale issues, lacking data on the distribution of drain infrastructure, and lacking drain flow observations. This calls for more indirect methods to inform such models. Here, we investigate the hypothesis that drain flow leaves a signal in streamflow signatures, as it represents a distinct streamflow generation process. Streamflow signatures are indices characterizing hydrological behaviour based on the hydrograph. Using machine learning regressors, we show that there is a correlation between signatures of simulated streamflow and simulated drain fraction. Based on these insights, signatures relevant to drain flow are incorporated in hydrological model calibration. A distributed coupled groundwater–surface water model of the Norsminde catchment, Denmark (145 km2) is set up. Calibration scenarios are defined with different objective functions; either using conventional stream flow metrics only, or a combination with hydrological signatures. We then evaluate the results from the different scenarios in terms of how well the models reproduce observed drain flow and spatial drainage patterns. Overall, the simulation of drain in the models is satisfactory. However, it remains challenging to find a direct link between signatures and an improvement in representation of drainage. This is likely attributable to model structural issues and lacking flexibility in model parameterization.


Author(s):  
Marco Delle Rose

Sinkhole flooding is an essential hydrological process to recharge karst aquifer in arid to dry sub-humid regions. On the other hand, the increase of rain extremes is one of the major consequences of the global warming, together with the expansion of drylands. Thus, appropriate runoff regulation in endorheic karst basins in order to reduce the risk of flooding and improve the quantity and quality of the water drained by sinkholes will be more and more crucial. With these premises, a systematic review was performed by using WoS engine to infer the best practices for the karst water management in regions actually or potentially affected by water scarcity. Hydrological models are essential to manage the consequences of climate change on karst water resource, however the review shows that providing the tools necessary for reliable modeling is still challenging. Finally, due to the intrinsic vulnerability of the karst aquifers, pollution reduction and wastewater recycling policy will play key role in the next decades.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Evangelos Rozos ◽  
Panayiotis Dimitriadis ◽  
Vasilis Bellos

Machine learning has been employed successfully as a tool virtually in every scientific and technological field. In hydrology, machine learning models first appeared as simple feed-forward networks that were used for short-term forecasting, and have evolved into complex models that can take into account even the static features of catchments, imitating the hydrological experience. Recent studies have found machine learning models to be robust and efficient, frequently outperforming the standard hydrological models (both conceptual and physically based). However, and despite some recent efforts, the results of the machine learning models require significant effort to interpret and derive inferences. Furthermore, all successful applications of machine learning in hydrology are based on networks of fairly complex topology that require significant computational power and CPU time to train. For these reasons, the value of the standard hydrological models remains indisputable. In this study, we suggest employing machine learning models not as a substitute for hydrological models, but as an independent tool to assess their performance. We argue that this approach can help to unveil the anomalies in catchment data that do not fit in the employed hydrological model structure or configuration, and to deal with them without compromising the understanding of the underlying physical processes.


Author(s):  
Eva Sebok ◽  
Hans Jørgen Henriksen ◽  
Ernesto Pastén-Zapata ◽  
Peter Berg ◽  
Guillume Thirel ◽  
...  

2021 ◽  
Author(s):  
Eva Sebok ◽  
Hans Jørgen Henriksen ◽  
Ernesto Pastén-Zapata ◽  
Peter Berg ◽  
Guillume Thirel ◽  
...  

Abstract. Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analyzed and the result of a research experiment is presented using model weighting with the participation of 6 climate model experts and 6 hydrological model experts. For the experiment, seven climate models are a-priori selected from a larger Euro-CORDEX ensemble of climate models and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual elicitations of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological impact modellers in general are more open for assigning weights to different models in a multi model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models, and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only reestablish a uniform weight between climate models.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 188
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Sungwook Wi ◽  
Aleix Serrat-Capdevila ◽  
Tirthankar Roy

The combination of Hydrological Models and high-resolution Satellite Precipitation Products (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines for the quantification, propagation, and reduction in hydrological uncertainty when generating streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting (VEF) approach. In this regard, we describe and discuss the main steps required to implement, calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and forecast them up to eight days in the future. The forecasting process called short- to medium-range (SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT, the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS, HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal parameter sets estimated during the calibration process to increase the number of ensembles available for operational forecasting. Finally, inference-based approaches were evaluated during the application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and optimal parameter sets, was significantly achieved through a fully operational implementation of VEF combined with several HPS. Finally, the main challenges and opportunities associated with operational SR2MR streamflow forecasting using VEF are evaluated and discussed.


2021 ◽  
Vol 3 ◽  
Author(s):  
Daniel Cooley ◽  
Reed M. Maxwell ◽  
Steven M. Smith

Availability and quality of administrative data on irrigation technology varies greatly across jurisdictions. Technology choice, however, will influence the parameters of coupled human-hydrological systems. Equally, changing parameters in the coupled system may drive technology adoption. Here we develop and demonstrate a deep learning approach to locate a particularly important irrigation technology—center pivot irrigation systems—throughout the Ogallala Aquifer. The model does not rely on super computers and thus provides a model for an accessible baseline to train and deploy on other geographies. We further demonstrate that accounting for the technology can improve the insights in both economic and hydrological models.


Sign in / Sign up

Export Citation Format

Share Document