scholarly journals Analysis of minimal and maximal pressures, uncertainty and spectral density of fluctuating pressures beneath classical hydraulic jumps

2020 ◽  
Vol 20 (5) ◽  
pp. 1909-1921
Author(s):  
Seyed Nasrollah Mousavi ◽  
Davood Farsadizadeh ◽  
Farzin Salmasi ◽  
Ali Hosseinzadeh Dalir ◽  
Daniele Bocchiola

Abstract Knowledge of extreme pressures and fluctuations within stilling basins is of the utmost importance, as they may cause potential severe damages. It is complicated to measure the fluctuating pressures of hydraulic jumps in real-scale structures. Therefore, little information is available about the pressure fluctuations in the literature. In this paper, minimal and maximal pressures were analyzed on the flat bed of a stilling basin downstream of an Ogee spillway. Attention has been focused on dimensionless pressures related to the low and high cumulative probabilities of occurrence (P*0.1% and P*99.9%), respectively. The results were presented based on the laboratory-scale experiments. These parameters for the relatively high Froude numbers have not been investigated. The total standard uncertainty for the dimensionless mean pressures (P*m) was obtained around 1.87%. Spectral density analysis showed that the dominant frequency in the classical hydraulic jumps was about 4 HZ. Low-frequency of pressure fluctuations indicated the existence of large-scale vortices. In the zone near the spillway toe, P*0.1% reached negative values of around −0.3. The maximum values of pressure coefficients, namely |CP0.1%|max and CP99.9%max, were achieved around 0.19 and 0.24, respectively. New original expressions were proposed for P*0.1% and P*99.9%, which are useful for estimating extreme pressures.

2012 ◽  
Vol 212-213 ◽  
pp. 821-825
Author(s):  
Keyvan Nasiri ◽  
Mohammad Reza Kavianpour ◽  
Siavash Haghighi

The principle of energy dissipation in stilling basin is based on hydraulic jump formation. Due to the inherent fluctuating characteristic of the hydraulic jump, basin floor is subjected to variations of pressure, resulting in unstableness due to uplift forces. To increase the efficiency of the stilling basins and improve the energy dissipation rate, one or two rows of baffle blocks are applied on the basin floor. Causing a forced hydraulic jump, tension and compression forces are exerted by pressure fluctuations of rotating roller zone of hydraulic jump. In this investigation, to observe the impacts of baffle blocks on pressure fluctuations on basin floor, a standard USBR basin model type III was constructed, and then a second row of blocks was added to the basin. A set of pressure tubes was fixed along the axis of the basin to measure the static and dynamic pressures on basin floor. The results were expressed in dimensionless parameters including C-p, C+p, C’p, Cp. Also, power spectra of pressure fluctuations were calculated. The results show a decreasing trend in root mean square of pressure fluctuations as distancing from toe of jump along the basin with and without baffle blocks. Also, mean pressure increases when water jet strokes the basin then decreases under roller zone of jump and increases again after sequent depth. The spectral analysis indicates that the dominant frequency is between 10 rad/s and 35 rad/s and pressure fluctuations have low frequency characteristics.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Nasrin Hassanpour ◽  
Ali Hosseinzadeh Dalir ◽  
Arnau Bayon ◽  
Milad Abdollahpour

Pressure fluctuations are a key issue in hydraulic engineering. However, despite the large number of studies on the topic, their role in spatial hydraulic jumps is not yet fully understood. The results herein shed light on the formation of eddies and the derived pressure fluctuations in stilling basins with different expansion ratios. Laboratory tests are conducted in a horizontal rectangular flume with 0.5 m width and 10 m length. The range of approaching Froude numbers spans from 6.4 to 12.5 and the channel expansion ratios are 0.4, 0.6, 0.8, and 1. The effects of approaching flow conditions and expansion ratios are thoroughly analyzed, focusing on the dimensionless standard deviation of pressure fluctuations and extreme pressure fluctuations. The results reveal that these variables show a clear dependence on the Froude number and the distance to the hydraulic jump toe. The maximum values of extreme pressure fluctuations occur in the range 0.609<X<3.385, where X is dimensionless distance from the toe of the hydraulic jump, which makes it highly advisable to reinforce the bed of stilling basins within this range.


Author(s):  
Adrien Thacker ◽  
Sandrine Aubrun ◽  
Annie Leroy ◽  
Philippe Devinant

This study presents results of an experimental analysis of the unsteady features of the flow around the rear part of an Ahmed body with a rear slant angle of 25°. This analysis focuses on the half elliptic separation bubble that developps on the rear slanted surface and brings new information, improving the understanding of the flow unsteadiness. Flow investigations are carried out using hot wire probe measurements for velocity fluctuations in the plane of symmetry above the rear slanted surface and five unsteady flush mounted pressure taps (Kulite transducers) simultaneously acquiring static pressure fluctuations along the middle line of the slanted surface. Spectral analysis and Proper Orthogonal Decomposition of the output signal show the emergence of a low frequency unsteadiness and high frequency activities which, in accordance with bibliography about separated and reattaching flow configurations, is related to a global flapping of the separated shear layer and a large scale vortices shedding. Characteristic frequencies of both instabilities is given and physical effects of the low frequency unsteadiness is related with the flapping motion of the separated shear layer.


2011 ◽  
Vol 415-417 ◽  
pp. 720-723
Author(s):  
Dong Ju Chen ◽  
Jin Wei Fan ◽  
Hai Yong Li ◽  
Fei Hu Zhang

A new method for extracting spectrum feature of gas flucturation of aerostatic guideway is proposed. The flatness error of workpiece surface includes much errors information, and the information contains high frequency signal and low frequency signal, for these errors information, a new identification method of turning errors of workpiece based on the wavelet transform and power spectral density analysis is proposed. According to the focal variation character of wavelet and the energy value of power spectral density analysis, the feature of gas flucturation of aerostatic guideway from the measured flatness error of workpiece is extracted and identified.


1984 ◽  
Vol 106 (3) ◽  
pp. 343-350 ◽  
Author(s):  
T. M. Farabee ◽  
M. J. Casarella

Measurements were made of the mean velocity profiles and wall pressure field upstream and downstream of the flow over both a backward-facing and forward-facing step. For each configuration the velocity profiles show that the effects of the separation-reattachment process persist more than 24 step heights downstream of the step. Extremely high values of the RMS wall pressure are measured near reattachment. These values are 5 and 10 times larger than on a smooth flat plate for the backward-facing step and the forward-facing step, respectively. The spectral density of the wall pressure fluctuations in the recirculation region is dominated by low frequency components. Downstream of reattachment there is a reduction in the low frequency content of the wall pressures and an increase in the high frequency components. At the farthest measured position downstream, the spectral density is still higher than that found on a smooth flat plate. These results show that the complex turbulent flow generated by a surface irregularity can significantly increase the localized wall pressure field and these increases persist far downstream of the irregularity. Consequently, a surface irregularity can be a major source of turbulence-induced vibrations and flow noise, as well as a cause of the inception of cavitation in marine applications.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 323
Author(s):  
Seyed Nasrollah Mousavi ◽  
Renato Steinke Júnior ◽  
Eder Daniel Teixeira ◽  
Daniele Bocchiola ◽  
Narjes Nabipour ◽  
...  

Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k%), and the statistical coefficient of the probability distribution (Nk%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk%. The values of the Nk% coefficient indicated a single mean value for each probability.


2020 ◽  
Vol E103.C (11) ◽  
pp. 588-596
Author(s):  
Masamune NOMURA ◽  
Yuki NAKAMURA ◽  
Hiroo TARAO ◽  
Amane TAKEI

2021 ◽  
Vol 20 (1-2) ◽  
pp. 4-34
Author(s):  
Reda R Mankbadi ◽  
Saman Salehian

In this work we propose replacing the conventional flat-surface airframe that shields the engine by a wavy surface. The basic principle is to design a wavy pattern to reflect the incoming near-field flow and acoustic perturbations into waves of a particular dominant frequency. The reflected waves will then excite the corresponding frequency of the large-scale structure in the initial region of the jet’s shear layer. By designing the frequency of the reflected waves to be the harmonic of the fundamental frequency that corresponds to the radiated peak noise, the two frequency-modes interact nonlinearly. With the appropriate phase difference, the harmonic dampens the fundamental as it extracts energy from it to amplify. The outcome is a reduction in the peak noise. To evaluate this concept, we conducted Detached Eddy Simulations for a rectangular supersonic jet with and without the wavy shield and verified our numerical results with experimental data for a free jet, as well as, for a jet with an adjacent flat surface. Results show that the proposed wavy surface reduces the jet noise as compared to that of the corresponding flat surface by as much as 4 dB.


Sign in / Sign up

Export Citation Format

Share Document