Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms

2006 ◽  
Vol 53 (11) ◽  
pp. 65-72 ◽  
Author(s):  
N. Yamashita ◽  
M. Yasojima ◽  
N. Nakada ◽  
K. Miyajima ◽  
K. Komori ◽  
...  

Contamination of surface waters by pharmaceutical chemicals is an emerging environmental problem. This study evaluated the toxic effects of the antibacterial agents levofloxacin (LVFX) and clarithromycin (CAM), which are widely used in Japan, on aquatic organisms. Ecotoxicity tests using a bacterium, alga and crustacean were conducted. Microtox test using a marine fluorescent bacterium showed that LVFX and CAM have no acute toxicity to the bacterium. From the results of the Daphnia immobilisation test, LVFX and CAM did not show acute toxicity to the crustacean. Meanwhile, an algal growth inhibition test revealed that LVFX and CAM have high toxicity to the microalga. The phytotoxicity of CAM was about 100-fold higher than that of LVFX from a comparison of EC50 (median effective concentration) value. From the Daphnia reproduction test, LVFX and CAM also showed chronic toxicity to the crustacean. Concentrations of LVFX and CAM in the aquatic environment were compared with PNEC (predicted no effect concentration) to evaluate the ecological risk. As a result, the ecological risk of LVFX is considered to be low, but that of CAM is higher, suggesting that CAM discharged into an aquatic environment after therapeutic use may affect organisms in the aquatic environment.

2013 ◽  
Vol 36 (5) ◽  
pp. 965-970 ◽  
Author(s):  
Hao WU ◽  
Min JIANG ◽  
Zhang-Xiao PENG ◽  
Lin HE

2005 ◽  
Vol 40 (4) ◽  
pp. 431-447 ◽  
Author(s):  
R. James Maguire ◽  
Suzanne P. Batchelor

Abstract A survey of water and sediment from 152 harbours, marinas and shipping channels across Canada was conducted in 1999 to determine the extent of contamination by tributyltin (TBT) prior to the total ban on its antifouling uses being phased in over the period 2003 to 2008, and to assess the effectiveness of the 1989 regulation of antifouling uses of TBT under the Canadian Pest Control Products Act. TBT was found in sediments in this survey much more frequently than in water. The main conclusion was that by 1999 the regulation had been generally effective in reducing TBT contamination in water, but not sediment, in small-craft marinas and harbours. TBT continued to be found in some freshwater and seawater locations frequented by larger vessels, that could have been legally painted at the time with TBT antifouling paints, at concentrations that could cause chronic toxicity to aquatic organisms. TBT was also found in many marine sediments, and some freshwater sediments, at concentrations that could cause chronic toxicity to sensitive benthic organisms. In addition, TBT concentrations in many marine sediments could cause acute toxicity to sensitive benthic organisms. Because of the long persistence of TBT in sediments, it may pose a hazard to benthic organisms in some locations in Canada for many years after the total ban on antifouling uses of TBT.


1999 ◽  
Vol 40 (1) ◽  
pp. 357-364 ◽  
Author(s):  
A. Kungolos ◽  
P. Samaras ◽  
A. M. Kipopoulou ◽  
A. Zoumboulis ◽  
G. P. Sakellaropoulos

The effects of three common agrochemicals, lindane, methyl parathion and atrazine, on crustacean Daphnia magna, alga Selenastrum capricornutum and marine bacterium Vibrio fischeri were investigated in this study. Methyl parathion was the most toxic compound towards all three organisms, while lindane was more toxic to Daphnia magna and Vibrio fischeri than atrazine, and atrazine was more toxic to Selenastrum capricornutum than lindane. Among the three aquatic organisms, Selenastrum capricornutum was most sensitive in detecting lindane and atrazine toxicity, while Daphnia magna was most sensitive in detecting methyl parathion toxicity. The interactive effects of the pesticides were also investigated. The interactive effect between lindane and methyl parathion on survival of Daphnia magna was synergistic, while the ones between lindane and atrazine and between methyl parathion and atrazine were generally additive. The interactive effect of the three pesticides applied together on Daphnia magna was synergistic. The interactive effect of the three pesticides on the growth of Selenastrum capricornutum was antagonistic with few cases of addition, while the effect of all the three pairs of pesticides on algal growth was also antagonistic. The interactive effect of lindane and methyl parathion on Vibrio fischeri was additive.


1975 ◽  
Vol 189 (1096) ◽  
pp. 305-332 ◽  

A range of chlorinated hydrocarbons derived from C 1 and C 2 hydrocarbons is manufactured industrially. They are used as intermediates for further chemical manufacture and also outside the chemical industry as solvents or carriers. In the latter category losses in use are eventually dispersed to the environment. The distribution of some of these compounds, including chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene and trichloroethane, in the environment (air, water and marine sediments) has been investigated and the results are presented. The concentrations found have been compared with acute toxicity levels to fish and other aquatic organisms, ascertained by laboratory bioassay. The occurrence of the compounds has been determined in a number of marine organisms, especially those at higher trophic levels, and the accumulation of some of them has been investigated in the laboratory. Chemical and microbial degradation processes have been studied in the laboratory to help determine the course of their removal from the aqueous and aerial environment, and the half lives of some of the compounds have been estimated. It is concluded that these compounds are not persistent in the environment, and that there is no significant bioaccumulation in marine food chains.


Author(s):  
Marjan Esmaeilzadeh ◽  
Elham Mahmoudpuor ◽  
Somayeh Haghighat Ziabari ◽  
Sara Esmaeilzadeh ◽  
Hamideh Aliani ◽  
...  

Abstract In this paper, concentrations of some heavy metals in surficial sediments of the International Anzali Wetland were measured, this wetland is located in northern part of Iran. Sediment pollution levels were examined and analyzed using reliable pollution indices including Pollution Load Index (PLI), Geoaccumulation Index (Igeo) and Enrichment Factor (CF), and finally it was revealed that heavy metal pollution ranged from low to moderated loads in the wetland. According to Sediment Quality Guidelines (SQGs) and Ecological Risk Index (ERI), it was concluded that As and Ni may have significant toxic impacts on aquatic organisms and also according to Effect Range Median (ERM), the toxicity probability of sediments in the Anzali wetland was estimated at 21%.


OSEANA ◽  
2019 ◽  
Vol 42 (2) ◽  
pp. 12-22
Author(s):  
Triyoni Purbonegoro

FACTORS THAT AFFECTING THE TOXICITY OF POLLUTANTS TO AQUATIC ORGANISMS. There are a large number of pollutants in aquatic environment with various characteristics and factors that can modify and affect the toxicity of pollutants in this environment. The major factors affecting pollutant toxicity include physicochemical properties of pollutants, mode of exposure, time, environmental factors, and biological factors. Moreover, organisms in an aquatic ecosystem are seldom exposed to only single pollutant, and most cases the stress of pollution on aquatic ecosystems is related to the interaction and combined effects of many chemicals. The combined effects may be synergistic or antagonistic, depending on the pollutants and the physiological condition of the organism involved.


Sign in / Sign up

Export Citation Format

Share Document