Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system

2016 ◽  
Vol 73 (11) ◽  
pp. 2815-2823 ◽  
Author(s):  
Yiming Zha ◽  
Ziqing Zhou ◽  
Haibo He ◽  
Tianlin Wang ◽  
Liqiang Luo

Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption–desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 275 ◽  
Author(s):  
Quan Lu ◽  
Yanjuan Zhang ◽  
Huayu Hu ◽  
Wen Wang ◽  
Zuqiang Huang ◽  
...  

To rapidly obtain a stable Fe3O4@cellulose heterogeneous Fenton catalyst, a novel in situ chemical co-precipitation method was developed. Compared with mechanical activation (MA)-pretreated cellulose (MAC), MA + FeCl3 (MAFC)-pretreated cellulose (MAFCC) was more easily dissolved and uniformly distributed in NaOH/urea solvent. MAFCC and MAC solutions were used as precipitators to prepare Fe3O4@MAFCC and Fe3O4@MAC nanocomposites, respectively. MAFCC showed stronger interaction and more uniform combination with Fe3O4 nanoparticles than MAC, implying that MAFC pretreatment enhanced the accessibility, reactivity, and dissolving capacity of cellulose thus, provided reactive sites for the in situ growth of Fe3O4 nanoparticles on the regenerated cellulose. Additionally, the catalytic performance of Fe3O4@MAFCC nanocomposite was evaluated by using for catalytic degradation of methylene blue (MB), and Fe3O4@MAC nanocomposite and Fe3O4 nanoparticles were used for comparative studies. Fe3O4@MAFCC nanocomposite exhibited superior catalytic activity for the degradation and mineralization of MB in practical applications. After ten cycles, the structure of Fe3O4@MAFCC nanocomposite was not significantly changed owing to the strong interaction between MAFCC and Fe3O4 nanoparticles. This study provides a green pathway to the fabrication of a stable nanocomposite catalyst with high catalytic performance and reusability for the degradation of organic pollutants.


2021 ◽  
Author(s):  
Hong Liu ◽  
Peng Zhang ◽  
Houwang Chen ◽  
Ning Ding ◽  
Jing Ni

Abstract Wide use of 2-Amino-4-Acetaminoanisole (AMA) as a coupling component in the synthesis of many commercial dyes leads to the generation of AMA dyed wastewater. Discharge of untreated AMA dyed wastewater could bring environmental concerns. The present study featured H2O2 heterogeneous Fenton system to degrade 2-Amino-4-Acetaminoanisole from wastewater using nano-Fe3O4 catalyst prepared via the co-precipitation method. Based on a single factor and taking the AMA removal rate as the response value, the Box-Benhnken (BBD) response surface method was used to investigate the individual effects of Fe3O4 dosage, H2O2 dosage, initial pH, and reaction time. For the interaction study, the experimental data were processed with Design-Expert 10.0 software to obtain a quadratic response surface model. The results showed that the order of the influence of the four independent variables on the response value is as follows: nano-Fe3O4 dosage > H2O2 dosage > reaction time > pH. The obtained mathematical model exhibited a high degree of fit with the maximum AMA removal efficiency reaching to 100%. The optimal reaction conditions considered in this study are 1.70 g/L of Nano-Fe3O4 dosage, 53.52 mmol/L of H2O2 dosage, pH 5.14 and 388.97 mins as system reaction time. Furthermore, HPLC-MS was employed to analyze the degradation mechanism of AMA and the reaction intermediate products. Findings of this research provides fundamental theory and could guide subsequent practical AMA treatment during wastewater treatment.


NANO ◽  
2008 ◽  
Vol 03 (04) ◽  
pp. 297-300 ◽  
Author(s):  
NI-BIN CHANG ◽  
MARTY WANIELISTA ◽  
FAHIM HOSSAIN ◽  
LEI ZHAI ◽  
KUEN-SONG LIN

Nutrients, such as nitrate, nitrite, and phosphorus, are common contaminants in many aquatic systems in the United States. Ammonia and nitrate are both regulated by the drinking water standards in the US primarily because excess levels of nitrate might cause methemoglobinemia. Phosphorus might become sources of the eutrophication problems associated with toxic algae in the freshwater bodies. Toxic algal blooms can cause severe acute and chronic public health problems. Chemical reduction of nitrate by using zero-valent iron started as early as 1964, and considerable research reports relating to this technology to nanomaterial were extensively reported in 1990s making the use of nanoscale zero-valent iron (NZVI) particles for nitrate removal become one of the most popular technologies in this field. The purpose of the present study was to examine the potential of integrating green sorption media, such as sawdust, limestone, tire crumb, and sand/silt, with two types of nanoparticles, including NZVI and Titanium Dioxide ( TiO 2), for nitrate removal in an engineering process. The study consists of running packed bed column tests followed by the addition of NZVI and TiO 2 to improve nitrate and phosphorus removal efficiency. Preliminary results in this paper show that the potential and advanced study may support the creation of design criteria of stormwater and groundwater treatment systems for water reuse in the future.


2012 ◽  
Vol 463-464 ◽  
pp. 543-547 ◽  
Author(s):  
Cheng Feng Li ◽  
Xiao Lu Ge ◽  
Shu Guang Liu ◽  
Fei Yu Liu

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document