REACTION BEHAVIOR OF C6H6 IN THE THREE-WAY CATALYTIC CONVERTER EQUIPPED A GASOLINE ENGINE

Author(s):  
Akio Takigawa
2021 ◽  
Author(s):  
Qingsong Zuo ◽  
Xiaomei Yang ◽  
Bin Zhang ◽  
Qingwu Guan ◽  
Zhuang Shen ◽  
...  

Abstract Improving the flow field uniformity of catalytic converter can promote the catalytic conversion of NO to NO2. Firstly, the physical and mathematical models of improved catalytic converter are established, and its accuracy is verified by experiments. Then, the NO catalytic performance of standard and improved catalytic converters is compared, and the influences of structural parameters on its performance are investigated. The results showed that: (1) The gas uniformity, pressure drop and NO conversion rate of the improved catalytic converter are increased by 0.0643, 6.78% and 7.0% respectively. (2) As the cell density combination is 700 cpsi/600 cpsi, NO conversion rate reaches the highest, 73.7%, and the gas uniformity is 0.9821. (3) When the tapered height is 20 mm, NO conversion rate reaches the highest, 72.4%, the gas uniformity is 0.9744. (4) When the high cell density radius is 20 mm, NO conversion rate reaches the highest, 72.1%, the gas uniformity is 0.9783. (5) When the tapered end face radius is 20 mm, NO conversion rate reaches the highest, 72.0%, the gas uniformity is 0.9784. The results will provide a very important reference value for improving NO catalytic and reducing vehicle emission.


Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116521 ◽  
Author(s):  
Qingsong Zuo ◽  
Yong Xie ◽  
Jiaqiang E ◽  
Xinning Zhu ◽  
Bin Zhang ◽  
...  

Author(s):  
Kuo Yang ◽  
Pingen Chen

With increasingly demanding regulations on engine emission and fuel efficiency, the optimization of the internal combustion engine and the after-treatment integrated system has become a critical research focus. To address such an issue, this paper aims to achieve a better trade-off between the fuel consumption of a spark-ignited (SI) engine and emission conversion efficiencies of a Three-Way Catalytic converter (TWC) system. A Model Predictive Control (MPC)-based integrated engine and TWC control methodology is presented, which is able to optimize Air/Fuel Ratio (AFR) to maintain oxygen storage of TWC at a desired level and thus meet the tailpipe NOx, CO and HC emission requirements. The effectiveness of the presented control methodology is validated in simulation. Compared with the existing dithering-based AFR control, the proposed MPC-based AFR control can improve CO emission conversion efficiencies by 8.42% and 4.85% in simplified US06 and UDDS driving cycles, respectively. At the same time, Nitrogen Oxides (NOx) conversion efficiency maintains above the required limit of 95% and the fuel efficiency remains at the same level as the existing control methodology in production as well. Such an integrated engine-aftertreatment system control can be instrumental in improving engine efficiency and emission reduction performance.


1992 ◽  
Vol 66 (10) ◽  
pp. 681-687 ◽  
Author(s):  
Barbara Blaurock ◽  
Susanne Hippeli ◽  
Norbert Metz ◽  
Erich F. Elstner

2014 ◽  
Vol 628 ◽  
pp. 249-252
Author(s):  
Jun Ji Li

The control of automobile exhaust emission has become one of the most important technologies for a modern vehicles. Catalytic conversion technology of three-way catalytic converter in the outer purification system is very mature and stable, which has been the first choice of exhaust emission control technology in China. The organic combination of the purification systems outside and inside machine can fully improve the performance and the fuel economy of vehicles on the basis of low emission levels.


Author(s):  
Martin Lenz ◽  
Moritz Cremer ◽  
Daniel Guse ◽  
Henning Röhrich ◽  
Stefan Pischinger

Concerning the discussions about emissions caused by individual mobility, it is foreseeable that future vehicle concepts will increasingly be based on hybrid powertrains. These systems lead to more complex operating scenarios, which have a significant influence on the resulting emissions of the engine. This work shows a case study and the results in the operation and emission behavior of a plug-in hybrid electric vehicle with a direct injection gasoline engine when operated in an internationally recognized driving cycle. The vehicle’s exhaust aftertreatment system consists of a three-way catalytic converter; a particulate filter is not installed. The emissions are analyzed with a focus on particulate number emissions (from soot), especially during the warm-up phase and the frequent start–stop events (in total, there are 12 internal combustion engine operating phases), which are typical for hybrid vehicles. The results show that approximately 50% of the emitted particulates have a smaller size, 23 nm (a very high number of particulates with a mean size of 10 to 15 nm are present), which are currently not regulated, but are expected to have a high risk of adverse health effects.


Sign in / Sign up

Export Citation Format

Share Document