hybrid electric
Recently Published Documents


TOTAL DOCUMENTS

7320
(FIVE YEARS 1780)

H-INDEX

129
(FIVE YEARS 22)

2022 ◽  
Vol 51 ◽  
pp. 101892
Author(s):  
M. Manikandan ◽  
Eshan Vaidya ◽  
Rajkumar S. Pant

2022 ◽  
Vol 8 ◽  
pp. 832-851
Author(s):  
Yue Wang ◽  
Atriya Biswas ◽  
Romina Rodriguez ◽  
Zahra Keshavarz-Motamed ◽  
Ali Emadi

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Mahendiran T. Vellingiri ◽  
Ibrahim M. Mehedi ◽  
Thangam Palaniswamy

In recent years, alternative engine technologies are necessary to resolve the problems related to conventional vehicles. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are effective solutions to decarbonize the transportation sector. It also becomes important to shift from traditional houses to smart houses and from classical vehicles to EVs or HEVs. It is needed to combine renewable energy sources (RESs) such as solar photovoltaics, wind energy systems, and various forms of bio-energies. Among various HEV technologies, an effective battery management system (BMS) still remains a crucial issue that is majorly used for indicating the battery state of charge (SOC). Since over-charging and over-discharging result in inevitable impairment to the batteries, accurate SOC estimation desires to be presented by the BMS. Although several SOC estimation techniques exist to regulate the SOC of the battery cell, it is needed to improvise the SOC estimation performance on HEVs. In this view, this paper focuses on the design of a novel deep learning (DL) with SOC estimation model for secure renewable energy management (DLSOC-REM) technique for HEVs. The presented model employs a hybrid convolution neural network and long short-term memory (HCNN-LSTM) model for the accurate estimation of SOC. In order to improve the SOC estimation outcomes of the HCNN-LSTM model, the barnacles mating optimizer (BMO) is applied for the hyperpower tuning process. The utilization of the HCNN-LSTM model makes the modeling process easier and offers a precise depiction of the input–output relationship of the battery model. The design of BMO based HCNN-LSTM model for SOC estimation shows the novelty of the work. An extensive experimental analysis highlighted the supremacy of the proposed model over other existing methods in terms of different aspects.


2022 ◽  
Vol 12 (2) ◽  
pp. 812
Author(s):  
Claudio Maino ◽  
Antonio Mastropietro ◽  
Luca Sorrentino ◽  
Enrico Busto ◽  
Daniela Misul ◽  
...  

Hybrid electric vehicles are, nowadays, considered as one of the most promising technologies for reducing on-road greenhouse gases and pollutant emissions. Such a goal can be accomplished by developing an intelligent energy management system which could lead the powertrain to exploit its maximum energetic performances under real-world driving conditions. According to the latest research in the field of control algorithms for hybrid electric vehicles, Reinforcement Learning has emerged between several Artificial Intelligence approaches as it has proved to retain the capability of producing near-optimal solutions to the control problem even in real-time conditions. Nevertheless, an accurate design of both agent and environment is needed for this class of algorithms. Within this paper, a detailed plan for the complete project and development of an energy management system based on Q-learning for hybrid powertrains is discussed. An integrated modular software framework for co-simulation has been developed and it is thoroughly described. Finally, results have been presented about a massive testing of the agent aimed at assessing for the change in its performance when different training parameters are considered.


Author(s):  
Sadra Hemmati ◽  
Rajeshwar Yadav ◽  
Kaushik Surresh ◽  
Darrell Robinette ◽  
Mahdi Shahbakhti

Connected and Automated Vehicles (CAV) technology presents significant opportunities for energy saving in the transportation sector. CAV technology forecasts vehicle and powertrain power needs under various terrain, ambient, and traffic conditions. Integration of the CAV technology in Hybrid Electric Vehicles (HEVs) provides the opportunity for optimal vehicle operation. Indeed, Hybrid Electric Vehicle powertrains present high degrees of flexibility and possibility for choosing optimum powertrain modes based on the predicted traction power needs. In modeling complex CAV powertrain dynamics, the modeler needs to consider short-time scale powertrain dynamics, such as engine transients, and hysteresis of mode-switching for a multi-mode HEV. Therefore, the powertrain dynamics essential for developing powertrain controllers for a class of connected HEVs is presented. To this end, control-oriented powertrain dynamic models for a test vehicle consisting of full electric, hybrid, and conventional engine operating modes are developed. The resulting powertrain model can forecast vehicle traction torque and energy consumption for the specified prediction horizon of the test vehicle. The model considers different operating modes and associated energy penalty terms for mode switching. Thus, the vehicle controller can determine the optimum powertrain mode, torque, and speed for forecasted vehicle operation via utilizing connectivity data. The powertrain model is validated against the experimental data and shows prediction error of less than 5% for predicting vehicle energy consumption. The model is used to create energy penalty maps that can be used for CAV control, for example fuel penalty map for engine torque changes (10–40 Nm) at each engine speed. The results of model-based optimization show optimum switching delays ranging from 0.4 to 1.4 s to avoid hysteresis in mode switching.


Sign in / Sign up

Export Citation Format

Share Document