A Study on the Rearrangement of Dialkyl 1-Aryl-1-hydroxymethylphosphonates to Benzyl Phosphates

2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.

2021 ◽  
Author(s):  
F. Manente ◽  
L. Pietrobon ◽  
L. Ronchin ◽  
A. Vavasori

AbstractIn this work we studied the reactivity of the Trifluoroacetic acid hydroxylamine system in the one step salt free synthesis of amides from ketones. A particular regards was paid to the caprolactam synthesis because of its industrial relevance. Synthesis, reactivity and characterization of the hydroxylamine trifluoroacetate is given. Fast oximation reaction of several ketones was gained at room temperature (1 h of reaction quantitative conversion for several ketones). In the same reactor, by raising the temperature at 383 K, the Beckmann rearrangement of the so obtained oximes is easily accomplished in the presence of three equivalent of TFA. The possibility of obtaining the trifluoroacetate of the hydroxylamine with a modified nitric acid hydrogenation reactions was verified, too. Reuse of solvent and trifluoroacetic acid is easily achieved by distillation. Graphical abstract Salt free one-pot caprolactam and amides process catalyzed by CF3COOH, in the presence of NH2OH TFA as the oximation agent.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1002 ◽  
Author(s):  
M. Asunción Molina ◽  
Victoria Gascón-Pérez ◽  
Manuel Sánchez-Sánchez ◽  
Rosa M. Blanco

The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Braja Gopal Bag ◽  
Shib Shankar Dash ◽  
Anup Mandal

The antioxidant efficacy of the rhizome extract of Polygonatum cirrhifolium (Mahameda) has been studied against a stable 2, 2-diphenylpicrylhydrazyl (DPPH) radical at room temperature. The chemical constituents present in the rhizome extract have been utilized for the one step synthesis of stable gold nanoparticles at room temperature under very mild conditions.


2020 ◽  
Vol 49 (7) ◽  
pp. 2068-2072 ◽  
Author(s):  
Malte Fischer ◽  
Lisa Vincent-Heldt ◽  
Malena Hillje ◽  
Marc Schmidtmann ◽  
Ruediger Beckhaus

The synthesis of a room temperature stable titanacyclopropane in a one-step-two-transformation protocol is presented. Additionally, a novel one-pot procedure toward Cp2Ti(η2-Me3SiC2SiMe3) was subsequently developed.


2018 ◽  
Vol 9 (30) ◽  
pp. 6390-6394 ◽  
Author(s):  
Hairong Lyu ◽  
Yangjian Quan ◽  
Zuowei Xie

A novel Rh-catalyzed cascade cyclization featuring both carboranyl B–H and aryl C–H activation has been developed, resulting in the one-pot construction of three new B–C and C–C bonds. The isolation and structural identification of a key intermediate provide solid evidence for the reaction mechanism.


Author(s):  
Maxime Bourguignon ◽  
Jean-Michel Thomassin ◽  
Bruno Grignard ◽  
Christine Jerome ◽  
Christophe Detrembleur

2010 ◽  
Vol 8 (2) ◽  
pp. 320-325 ◽  
Author(s):  
Santosh Katkar ◽  
Pravinkumar Mohite ◽  
Lakshman Gadekar ◽  
Balasaheb Arbad ◽  
Machhindra Lande

AbstractA rapid and an efficient one-pot method for the synthesis of quinoxalines catalysed by ZnO-beta zeolite at room temperature is described. This environmentally benign method provides several advantages over methods that are currently employed such as a simple work-up, mild reaction conditions, good to excellent yields, and a process to recover and reuse the catalyst for several cycles with consistent activity.


RSC Advances ◽  
2015 ◽  
Vol 5 (49) ◽  
pp. 39263-39269 ◽  
Author(s):  
Goutam Brahmachari ◽  
Bubun Banerjee

Ceric ammonium nitrate (CAN)-catalyzed one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methane scaffolds (3a–3u) has been developed via a pseudo three-component reaction in aqueous ethanol at room temperature.


Sign in / Sign up

Export Citation Format

Share Document