Diagnostic Value of Non-Invasive Prenatal Screening of β-thalassemia by Cell Free Fetal DNA and Fetal NRBC

2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.

2021 ◽  
Vol 70 (1) ◽  
pp. 19-50
Author(s):  
Elena A. Kalashnikova ◽  
Andrey S. Glotov ◽  
Elena N. Andreyeva ◽  
Ilya Yu. Barkov ◽  
Galina Yu. Bobrovnik ◽  
...  

This review article offers an analysis of application of cell-free fetal DNA non-invasive prenatal screening test for chromosome abnormalities in the mothers blood in different countries. The diagnostic capacities of the method, its limitations, execution models and ethical aspects pertinent to its application are discussed. The data for the discordant results is shown and analyzed. The advantages of the genome-wide variant of cell-free fetal DNA analysis and the problems concerning its application in the mass screening are described. The main suggestion is to implement the contingent cell-free fetal DNA testing model for the common trisomies (for the chromosomes 21, 18 and 13) into the prenatal diagnostic screening programs in the Russian Federation. This novel model is based on the results of the mass combined first trimester prenatal screening in four federal subjects of the country completed by 2019 and is offered as an additional screening in the mid-level risk group (with cut-off from 1 : 100 to 1 : 500 or from 1 : 100 to 1 : 1000) defined according to the first trimester prenatal screening results. The basic requirements for the implementation of the contingent model in the Russian Federation are stated.


2020 ◽  
Author(s):  
Wang Haidong ◽  
Yang Zhijie ◽  
Elena Picchiassi ◽  
Federica Tarquini ◽  
Giuliana Coata ◽  
...  

ABSTRACTBackgroundCurrent next generation sequencing (NGS) and microarray based Non-Invasive Prenatal Tests (NIPT), used for the detection of common fetal trisomies, are still expensive, time consuming and need to be performed in centralized laboratories. To improve NIPT in clinical routine practice as universal prenatal screening, we have developed a digital droplet PCR (ddPCR) based assay called iSAFE NIPT using cell free fetal DNA (cffDNA) for detection of fetal trisomies 13, 18 and 21 in a single reaction with advantage of high diagnostic accuracy and reduced cost.Materials and MethodsWe first used artificial DNA samples to evaluate analytical sensitivity and specificity of the iSAFE NIPT. Next, we analysed 269 plasma samples for the clinical validation of iSAFE NIPT. Fifty-eight of these, including five trisomies 21, two trisomies 18 and one trisomy 13 were utilised to establish the assay cut-off values based on ratios between chromosome counts. The remaining 211 plasma samples, including 10 trisomies 21, were analysed to evaluate iSAFE NIPT clinical performance.ResultsiSAFE NIPT achieved a 100% analytical sensitivity (95% CI 94.9-100% trisomy 21; 79.4-100% trisomy 18; 73.5-100% trisomy 13) and 100% specificity (95% CI 96.3-100% trisomy 21; 97.6-100% trisomy 18; 97.6-100% trisomy 13). It also achieved a 100% clinical sensitivity and specificity for trisomy 21 detection in the 211 clinical samples (95% CI for sensitivity is 69.1-100%, and 95% CI for specificity is 98.2-100%).ConclusionsThe iSAFE NIPT is a highly multiplexed ddPCR based assay for detection of fetal trisomies from maternal blood. Based on clinical validation, the iSAFE NIPT has high diagnostic sensitivity and specificity. It can be decentralized in routine clinical laboratories, is fast, easy to use and economical comparing to current NIPT.


2019 ◽  
Vol 493 ◽  
pp. S593-S594
Author(s):  
A. Gutierrez Samper ◽  
A. Alonso Llorente ◽  
M. Fabre Estremera ◽  
E. Lara Navarro ◽  
M. Castillo Arce ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Luigi Carbone ◽  
Federica Cariati ◽  
Laura Sarno ◽  
Alessandro Conforti ◽  
Francesca Bagnulo ◽  
...  

Fetal aneuploidies are among the most common causes of miscarriages, perinatal mortality and neurodevelopmental impairment. During the last 70 years, many efforts have been made in order to improve prenatal diagnosis and prenatal screening of these conditions. Recently, the use of cell-free fetal DNA (cff-DNA) testing has been increasingly used in different countries, representing an opportunity for non-invasive prenatal screening of pregnant women. The aim of this narrative review is to describe the state of the art and the main strengths and limitations of this test for prenatal screening of fetal aneuploidies.


Sign in / Sign up

Export Citation Format

Share Document