Negative Correlation Between Serum Levels of Homocysteine and Apolipoprotein M

2019 ◽  
Vol 19 (2) ◽  
pp. 120-126
Author(s):  
J. Wei ◽  
Y. Yu ◽  
Y. Feng ◽  
J. Zhang ◽  
Q. Jiang ◽  
...  

Background: Homocysteine (Hcy) has been suggested as an independent risk factor for atherosclerosis. Apolipoprotein M (apoM) is a constituent of the HDL particles. The goal of this study was to examine the serum levels of homocysteine and apoM and to determine whether homocysteine influences apoM synthesis. Methods: Serum levels of apoM and Hcy in 17 hyperhomocysteinemia (HHcy) patients and 19 controls were measured and their correlations were analyzed. Different concentrations of homocysteine (Hcy) and LY294002, a specific phosphoinositide 3- kinase (PI3K) inhibitor, were used to treat HepG2 cells. The mRNA levels were determined by RT-PCR and the apoM protein mass was measured by western blot. Results: We found that decreased serum apoM levels corresponded with serum HDL levels in HHcy patients, while the serum apoM levels showed a statistically significant negative correlation with the serum Hcy levels. Moreover, apoM mRNA and protein levels were significantly decreased after the administration of Hcy in HepG2 cells, and this effect could be abolished by addition of LY294002. Conclusions: resent study demonstrates that Hcy downregulates the expression of apoM by mechanisms involving the PI3K signal pathway.

1992 ◽  
Vol 68 (01) ◽  
pp. 040-047 ◽  
Author(s):  
C Scott Jamison ◽  
Bryan F Burkey ◽  
Sandra J Friezner Degen

SummaryCultures of human hepatoblastoma (HepG2) cells were treated with vitamin K1 or warfarin and prothrombin antigen and mRNA levels were determined. With 3 and 6 h of 10 µg vitamin K1 treatment secreted prothrombin antigen levels, relative to total secreted protein levels, were increased 1.5-fold and 2.1-fold, respectively, over ethanol-treated control levels as determined by an enzyme-linked immunosorbent assay. Dose-response analysis with 3 h of 25 µg/ml vitamin K1 treatment demonstrated a maximal increase of 2.0-fold in secreted prothrombin antigen levels, relative to total secreted protein levels, over ethanol-treated control levels. Pulse-chase analysis with 35S-methionine and immunoprecipitation of 35S-labelled prothrombin demonstrated that, with vitamin K1 treatment (25 µg/ml, 3 h), the rate of prothrombin secretion increased approximately 2-fold and the total amount (intra- and extracellular) of prothrombin synthesized increased approximately 50% over ethanol-treated control levels. Warfarin treatment (1, 5, or 10 µg/ml, 24 h) resulted in decreases in secreted prothrombin antigen levels, relative to total protein levels to approximately 85%, 87% or 81% of ethanol-treated control levels. Analysis of total RNA isolated from these cultures by Northern and solution hybridization techniques demonstrated that prothrombin mRNA was approximately 2.1 kb and that neither vitamin K1 nor warfarin treatment affected the quantity of prothrombin mRNA (ranging from 240–350 prothrombin mRNA molecules per cell). These results demonstrate that vitamin K1 and warfarin, in addition to effects on γ-carboxylation, affect prothrombin synthesis post-transcriptionally, perhaps influencing translation, post-translational processing and/or secretion mechanisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Jung Heo ◽  
Sung-E Choi ◽  
Ja Young Jeon ◽  
Seung Jin Han ◽  
Dae Jung Kim ◽  
...  

Background. It has been suggested that visfatin, which is an adipocytokine, exhibits proinflammatory properties and is associated with insulin resistance. Insulin resistance and inflammation are the principal pathogeneses of nonalcoholic fatty liver disease (NAFLD), but the relationship, if any, between visfatin and NAFLD remains unclear. Here, we evaluated the effects of visfatin on hepatic inflammation and insulin resistance in HepG2 cells and examined the molecular mechanisms involved. Methods. After treatment with visfatin, the inflammatory cytokines IL-6, TNF-α, and IL-1β were assessed by real-time polymerase chain reaction (RT-PCR) and immunocytochemical staining in HepG2 cells. To investigate the effects of visfatin on insulin resistance, we evaluated insulin-signaling pathways, such as IR, IRS-1, GSK, and AKT using immunoblotting. We assessed the intracellular signaling molecules including STAT3, NF-κB, IKK, p38, JNK, and ERK by western blotting. We treated HepG2 cells with both visfatin and either AG490 (a JAK2 inhibitor) or Bay 7082 (an NF-κB inhibitor); we examined proinflammatory cytokine mRNA levels using RT-PCR and insulin signaling using western blotting. Results. In HepG2 cells, visfatin significantly increased the levels of proinflammatory cytokines, reduced the levels of proteins (e.g., phospho-IR, phospho-IRS-1 (Tyr612), phospho-AKT, and phospho-GSK-3α/β) involved in insulin signaling, and increased IRS-1 S307 phosphorylation compared to controls. Interestingly, visfatin increased the activities of the JAK2/STAT3 and IKK/NF-κB signaling pathways but not those of the JNK, p38, and ERK pathways. Visfatin-induced inflammation and insulin resistance were regulated by JAK2/STAT3 and IKK/NF-κB signaling; together with AG490 or Bay 7082, visfatin significantly reduced mRNA levels of IL-6, TNF-α and IL-1β and rescued insulin signaling. Conclusion. Visfatin induced proinflammatory cytokine production and inhibited insulin signaling via the STAT3 and NF-κB pathways in HepG2 cells.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Jordán García-Ortega ◽  
Francisco M. Pinto ◽  
Nicolás Prados ◽  
Aixa R. Bello ◽  
Teresa A. Almeida ◽  
...  

Abstract The neurokinin B/NK3 receptor (NK3R) and kisspeptin/kisspeptin receptor (KISS1R), two systems which are essential for reproduction, are coexpressed in human mural granulosa (MGC) and cumulus cells (CCs). However, little is known about the presence of other members of the tachykinin family in the human ovary. In the present study, we analyzed the expression of substance P (SP), hemokinin-1 (HK-1), NK1 receptor (NK1R), and NK2 receptor (NK2R) in MGCs and CCs collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. RT-PCR, quantitative RT-PCR, immunocytochemistry, and Western blotting were used to investigate the patterns of expression of tachykinin and tachykinin receptor mRNAs and proteins and the possible interaction between the tachykinin family and kisspeptin. Intracellular free Ca2+ levels ([Ca2+]i) in MGCs after exposure to SP or kisspeptin in the presence of SP were also measured. We found that SP, HK-1, the truncated NK1R isoform NK1R-Tr, and NK2R were all expressed in MGCs and CCs. NK1R-Tr mRNA and NK2R mRNA and protein levels were higher in MGCs than in CCs from the same patients. Treatment of cells with kisspeptin modulated the expression of HK-1, NK3R, and KISS1R mRNAs, whereas treatment with SP regulated kisspeptin mRNA levels and reduced the [Ca2+]i response produced by kisspeptin. These data demonstrate that the whole tachykinin system is expressed and acts in coordination with kisspeptin to regulate granulosa cell function in the human ovary.


2005 ◽  
Vol 186 (1) ◽  
pp. 145-155 ◽  
Author(s):  
S Shaikh ◽  
F H Bloomfield ◽  
M K Bauer ◽  
H H Phua ◽  
R S Gilmour ◽  
...  

We have previously reported that chronic intra-amniotic supplementation of the late gestation growth-restricted (IUGR) ovine fetus with IGF-I (20 μg/day) increased gut growth but reduced liver weight and circulating IGF-I concentrations. Here we report mRNA and protein levels of IGF-I, the type 1 IGF receptor (IGF-1R) and IGF-binding proteins (IGFBP)-1, -2 and -3 in fetal gut, liver, muscle and placenta from fetuses in that earlier study in an attempt to explain these contrasting results. mRNA and protein were extracted from tissues obtained at post mortem at 131 days of gestation (term, 145 days) from three groups of fetuses (control, IUGR+saline and IUGR+IGF-I, n=9 per group). Control fetuses were unembolised and untreated. In the IUGR groups, growth restriction was induced from 113 to 120 days by placental embolisation; from 120 to 130 days fetuses were treated with daily intra-amniotic injections of either saline or 20 μg IGF-I. mRNA was measured by RT-PCR or real-time RT-PCR, and protein by Western blot. In liver, muscle and placenta, IGF-I mRNA and protein levels were reduced by between 8 and 30% in IGF-I-treated fetuses compared with saline-treated fetuses and controls with no change in IGF-1R mRNA or protein levels. In contrast, in the gut, IGF-I mRNA and protein levels were not significantly altered with IGF-I treatment, but IGF-1R levels were increased, especially in the jejunum. Immunolocalisation demonstrated that IGF-1R expression was confined to the luminal aspect of the gut. mRNA levels of all three IGFBPs were reduced in the gut of IGF-I-treated fetuses, but hepatic expression was significantly increased. These data demonstrated tissue-specific regulation of IGF-I, IGF-1R and IGFBPs-1, -2 and -3 in response to intra-amniotic IGF-I supplementation, though the underlying mechanisms remain obscure.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Wenlong Liu ◽  
Qingxiang Zeng ◽  
Renzhong Luo

Background. Osteopontin (OPN) has been proved to be associated with allergic airway inflammation. However, the roles of OPN and its regulation in childhood allergic rhinitis (AR) are poorly understood.Objective. This study aims to evaluate the expression of OPN and miR-181a in children with AR and their association with Th1/Th2 immune response.Methods. Children who suffered from AR were included along with control subjects. Serum was collected to examine the level of OPN and Th1/Th2 cytokines by enzyme-linked immunosorbent assay (ELISA) and the level of miR-181a by quantitative polymerase chain reaction (qPCR).Results. Children with AR had significantly higher serum levels of OPN and lower serum levels of miR-181a than healthy controls. Furthermore, serum levels of OPN were positively correlated with Th2 cytokine and negatively correlated with Th1 cytokine. On the contrary, miR-181a level had a negative correlation with IL-4/IL-5 and positive correlation with IFN-γ/IL-12. More importantly, there was also significant negative correlation between OPN and miR-181a.Conclusion. The OPN protein and miR-181a levels may serve as predictors of disease severity in childhood AR and appear to be promising targets for modulating AR.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256545
Author(s):  
Natasha Singh ◽  
Bronwen Herbert ◽  
Garvin Sooranna ◽  
Nishel M. Shah ◽  
Ananya Das ◽  
...  

Inflammation is thought to play a pivotal role in the onset of term and some forms of preterm labour. Although, we recently found that myometrial inflammation is a consequence rather than a cause of term labour, there are several other reproductive tissues, including amnion, choriodecidua parietalis and decidua basalis, where the inflammatory stimulus to labour may occur. To investigate this, we have obtained amnion, choriodecidual parietalis and decidua basalis samples from women at various stages of pregnancy and spontaneous labour. The inflammatory cytokine profile in each tissue was determine by Bio-Plex Pro® cytokine multiplex assays and quantitative RT-PCR. Active motif assay was used to study transcription activation in the choriodecidua parietalis. Quantitative RT-PCR was use to study the pro-labour genes (PGHS-2, PGDH, OTR and CX43) in all of the tissues at the onset of labour and oxytocin (OT) mRNA expression in the choriodecidual parietalis and decidua basalis. Statistical significance was ascribed to a P value <0.05. In the amnion and choriodecidua parietalis, the mRNA levels of various cytokines decreased from preterm no labour to term no labour samples, but the protein levels were unchanged. The choriodecidua parietalis showed increase in the protein levels of IL-1β and IL-6 in the term early labour samples. In the amnion and decidua basalis, the protein levels of several cytokines rose in term established labour. The multiples of the median derived from the 19-plex cytokine assay were greater in term early labour and term established labour samples from the choriodecidua parietalis, but only in term established labour for myometrium. These data suggest that the inflammatory stimulus to labour may begin in the choriodecidua parietalis, but the absence of any change in prolabour factor mRNA levels suggests that the cytokines may act on the myometrium where we observed changes in transcription factor activation and increases in prolabour gene expression in earlier studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haixiang Xue ◽  
Miaomei Yu ◽  
Ying Zhou ◽  
Jun Zhang ◽  
Qinfeng Mu ◽  
...  

Abstract Prior studies have shown that apolipoprotein M (APOM) is involved in the development of some cancers. Here we investigated the effects of APOM on larynx cancer (LC). 20 patients with vocal cord polyps and 18 patients with LC were included in this study. The protein and mRNA levels of the samples were analysed using the Wes-ProteinSimple system (or traditional Western blot) and PCR technology, respectively. APOM protein level in cancer tissues was lower than that in paracarcinomatous (P = 0.0003) and polyp tissues (P < 0.0001). APOM overexpression significantly inhibited TU686 cell proliferation (P < 0.0001) and migration (P < 0.01), and increased expression of vitamin D receptor (VDR, P < 0.0001) as well as nuclear factor erythroid 2-like 3 (NFE2L3, P = 0.0215). In addition, matrix metalloproteinase-10 (MMP-10) mRNA level was significantly reduced in the APOM overexpression group (P = 0.0077). However, Western blot analysis showed that APOM overexpression did not change VDR, NFE2L3 and MMP-10 protein levels (P > 0.05). In summary, APOM inhibits the proliferation and migration of LC cells, but may not be related to VDR, NFE2L3 and MMP-10, which needs further study.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Randa Reda Mabrouk ◽  
Afaf Abdelalim Mostafa ◽  
Dina Aly Mohamed Aly Ragab ◽  
Fouad Mohamed Fouad zaki

Abstract Background The extraskeletal role of vitamin D is being increasingly recognized. This has important clinical implications, as vitamin D deficiency has reached epidemic proportions worldwide. Vitamin D has proposed anti-inflammatory properties as recent data suggests that low vitamin D concentrations are associated with increased levels of inflammatory markers. Interleukin-37(IL-37) is an IL1 family cytokine discovered in recent years and has 5 different isoforms. As an immunosuppressive factor, IL-37 can suppress excessive immune response .IL37 plays a role in protecting the body against endotoxin shock, ischemia reperfusion injury, autoimmune diseases, and cardiovascular diseases. In addition, IL-37 has a potential antitumor effect. IL-37 and its receptors may serve as novel targets for the study, diagnosis, and treatment of immune-related diseases and tumors. Aim of the Work The aim of this study is to determine the relation between the level of interleukin-37 and 25-hydroxy Vitamin D among Ain Shams University medical students. Subjects and Methods The study was conducted at Clinical Pathology Department, Ain Shams University Hospitals. Ninety individuals, from medical students of Ain Shams University who participated in the Nutritional Assessment of Ain Shams University Medical Students (NAMESASU) Project, were selected to be in the study. The study included 2 groups: Group I: included 45 subjects selected from the NAMES-ASU project with deficient vitamin D serum levels. Group II: included 45 subjects selected from the NAMES-ASU project with sufficient vitamin D serum levels. Results There was a highly significant difference between the two groups regarding vitamin D levels. Serum IL-37 levels were significantly higher in group I subjects compared to group II subjects. No significant difference was observed between group I and group II regarding BMI, BFM, PBF and hsCRP. No significant difference was observed between the two subgroups regarding IL-37 levels and hsCRP levels. A highly significant negative correlation was observed between vitamin D levels and IL-37. A significant negative correlation was observed between hsCRP and vitamin D levels. However, no correlation was observed between hsCRP and IL-37 levels. Conclusion Data from our study showed that present study denote that in case of vitamin D deficiency, irrespective of BMI, a subclinical state of inflammation may be present as reflected by the increased hsCRP levels and this state of inflammation might induce an increase in IL-37, an anti-inflammatory cytokine, in an attempt to reduce the inflammation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2494-2494
Author(s):  
Haiming Chen ◽  
Richard A. Campbell ◽  
Melinda S. Gordon ◽  
Steven J. Manyak ◽  
Cathy Wang ◽  
...  

Abstract Tie2, an endothelial cell-specific receptor kinase, plays an important role in tumor angiogenesis. This protein is essential to the development of embryonic vasculature as well as vascular growth and maintenance in adult tissues. Because of the increasing importance that angiogenesis has been shown to play in multiple myeloma (MM), we determined the number of Tie2-expressing cells in the peripheral blood (PB) of MM patients and its relationship to the serum levels and gene expression of a recently identified angiogenic factor, pleiotrophin (PTN). We have recently demonstrated that PTN is expressed and secreted by MM tumor cells, and serum levels of this protein are highly elevated in MM patients. We quantified the number of Tie2-positive cells in MM patients (n=15) and age-matched control subjects (n=10) using an immunohistochemical technique. Tie2-expressing cells were significantly elevated in the PB mononuclear cells (MCs) from MM patients compared to the normal controls (p&lt;0.05). We also analyzed gene expression for Tie2 in these same samples using RT-PCR. The results showed that Tie2 mRNA was strongly expressed in the PBMCs from MM patients whereas control samples showed no or low expression of this gene. Serum levels of PTN were tested with ELISA, and PTN mRNA concentrations were quantified by RT-PCR in PBMCs from these same patients and control subjects. The results showed that serum levels of PTN correlated with the number of Tie2-expressing PBMCs in MM patients (R2=0.5778). PTN mRNA levels also correlated with Tie2 gene expression in PBMC samples. We further examined whether monocyte colony stimulating factor (mCSF), PTN and vascular endothelial growth factor (VEGF) may be capable of inducing Tie2 expression in highly purified human monocytes that lack Tie2 expression. Normal PB monocytes were purified using density centrifugation followed by anti-CD14 micro-bead affinity column selection. Although none of these three proteins alone or the combinations of either VEGF and mCSF or VEGF and PTN induced Tie2 gene expression in the monocytes following one week of incubation, the combination of PTN (100 nM) and mCSF (20 nM) led to expression of Tie2 in these cells. We quantified the proportion of cells expressing Tie2 in these samples with RT-PCR using serial dilutional analysis with B or T cells that lack Tie2 expression, and showed that approximately 0.1–1.0% of the monocytes expressed this gene following incubation with PTN and mCSF. Moreover, the addition of VEGF (20 ng/ml) to PTN and mCSF increased the proportion of cells expressing Tie2 (to &gt;10%). Anti-PTN antibody blocked the induction of Tie2 gene expression in these monocytes by this cytokine combination. These results show that Tie2-expressing cells are elevated in the peripheral blood of MM patients, and correlate with PTN serum and PTN mRNA expression. PTN in combination with VEGF and mCSF induces Tie2 gene expression in a large proportion of circulating human monocytes. These results suggest that MM patients show increased numbers of vasculogenic progenitors in their circulation that may result from the presence of elevated levels of circulating angiogenic factors including PTN and VEGF.


2002 ◽  
pp. 655-661 ◽  
Author(s):  
F Arturi ◽  
I Presta ◽  
D Scarpelli ◽  
JM Bidart ◽  
M Schlumberger ◽  
...  

BACKGROUND: Various clinical and experimental findings support the concept that human chorionic gonadotropin (hCG) can stimulate iodide uptake in thyroid cells. DESIGN: We investigated the molecular mechanisms underlying the effects of hCG on iodide uptake, and particularly its action on the expression of Na+/I- symporter (NIS) mRNA and protein. METHODS: Iodide uptake was analyzed in FTRL-5 cells by measuring (125)I concentrations in cells after a 30-min exposure to 0.1 microCi carrier-free Na (125)I in the presence or absence of hCG or, for control purposes, TSH. Expression of NIS mRNA and NIS protein synthesis were evaluated, respectively, with a semiquantitative 'multiplex' RT-PCR method and Western blot analysis. RESULTS: Iodide uptake was increased by hCG in a dose- and time-dependent manner: maximal effects were observed after 72 h of stimulation. The effect was cAMP dependent and paralleled that of TSH, although it lacked the early cycloheximide-independent component seen with TSH, and its peak effect was lower. Semiquantitative multiplex RT-PCR revealed that hCG produced a significant increase in NIS mRNA levels that was detectable after 4 h and peaked after 48 h. In contrast, in TSH-stimulated FRTL-5 cells, maximum NIS mRNA expression was observed after 24 h of stimulation. Western blot analysis demonstrated that hCG also caused a 2.5-fold increase over basal values in NIS protein levels, which was similar to that observed after TSH stimulation although the peak effects of the latter hormone were less marked and occurred earlier. CONCLUSION: Our data demonstrated that hCG stimulates iodide uptake in FRTL-5 cells by increasing NIS mRNA and protein levels. Thus, the functional status of the thyroid may be influenced by hCG-dependent changes in NIS expression occurring during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document