Breast Cancer Detection and Classification using Traditional Computer Vision Techniques: A Comprehensive Review

Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.

2018 ◽  
Vol 2 (1) ◽  
pp. 14-18
Author(s):  
Gokalp Cinarer ◽  
Bulent Gursel Emiroglu ◽  
Ahmet Hasim Yurttakal

Breast cancer is cancer that forms in the cells of the breasts. Breast cancer is the most common cancer diagnosed in women in the world. Breast cancer can occur in both men and women, but it's far more common in women. Early detection of breast cancer tumours is crucial in the treatment. In this study, we presented a computer aided diagnosis expectation maximization segmentation and co-occurrence texture features from wavelet approximation tumour image of each slice and evaluated the performance of SVM Algorithm. We tested the model on 50 patients, among them, 25 are benign and 25 malign. The 80% of the images are allocated for training and 20% of images reserved for testing. The proposed model classified 2 patients correctly with success rate of 80% in case of 5 Fold Cross-Validation  Keywords: Breast Cancer, Computer-Aided Diagnosis (CAD), Magnetic Resonance Imaging (MRI);


2019 ◽  
Vol 31 (01) ◽  
pp. 1950007 ◽  
Author(s):  
Ali Mohammad Alqudah ◽  
Huda M. S. Algharib ◽  
Amal M. S. Algharib ◽  
Hanan M. S. Algharib

Breast cancer is the most frequent cancer type that is diagnosed in women. The exact causes of such cancer are still unknown. Early and precise detection of breast cancer using mammogram images or biopsy to provide the required medications can increase the healing percentage. There are much current research efforts to developed a computer aided diagnosis (CAD) system based on mammogram images for detecting and classification of breast masses. In this research, a CAD system is developed for automated segmentation and two-stages classification of breast masses. The first stage includes the classification of the masses into seven classes (normal, calcification, circumscribed, spiculated, ill-defined, architectural distortion, asymmetry), which is done using probabilistic neural network (PNN). The second classification stage is to define the severity of abnormality into two classes (Benign and Malignant) which were done using support vector machine (SVM). The results of applying the proposed method on two mammogram image show that the accuracy of detection and segmentation of the breast mass was 99.8% for mammographic image analysis society database (MIAS-DB) with 322 images and 97.5% for breast cancer digital repository (BCDR), BCDR-F03 and BCDR-DN01 with 936 images, while for the first classification stage has accuracy of 97.08%, sensitivity of 98.30% and specificity of 89.8%, and the second classification stage has an accuracy of 99.18%, sensitivity of 98.42% and specificity of 94.90%.


2021 ◽  
Vol 8 (2) ◽  
pp. 892-902
Author(s):  
Saifullah Harith Suradi ◽  
Kamarul Amin Abdullah ◽  
Nor Ashidi Mat Isa

Women with breast cancer have a high risk of death. Digitised mammograms can be used to detect the early stage of breast cancer. However, digitised mammograms suffer low contrast appearances that may lead to misdiagnosis. This paper proposes a Computer-Aided Diagnosis (CAD) system of automated classification of breast cancer lesions using a modified image processing technique of Fuzzy Anisotropic Diffusion Histogram Equalization Contrast Adaptive Limited (FADHECAL) incorporated with Multilevel Otsu Thresholding on digitised mammograms. Four main blocks were used in this CAD system, namely; (i) Pre-processing and Enhancement block; (ii) Segmentation block; (iii) Region of Interests (ROIs) Extraction block; and (iv) Classification block. The CAD system was tested on 30 digitised mammograms retrieved from the Mini-Mammographic Image Analysis Society (MIAS) database with various degrees of severity and background tissues. The proposed CAD system showed a high accuracy of 96.67% for the detection of breast cancer lesions.


2021 ◽  
Vol 69 ◽  
pp. 102914
Author(s):  
Raouia Mokni ◽  
Norhene Gargouri ◽  
Alima Damak ◽  
Dorra Sellami ◽  
Wiem Feki ◽  
...  

2021 ◽  
Vol 160 (6) ◽  
pp. S-376
Author(s):  
Eladio Rodriguez-Diaz ◽  
Gyorgy Baffy Wai-Kit Lo ◽  
Hiroshi Mashimo ◽  
Aparna Repaka ◽  
Alexander Goldowsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document