scholarly journals Automated Classification of Breast Cancer Lesions for Digitised Mammograms via Computer-Aided Diagnosis System

2021 ◽  
Vol 8 (2) ◽  
pp. 892-902
Author(s):  
Saifullah Harith Suradi ◽  
Kamarul Amin Abdullah ◽  
Nor Ashidi Mat Isa

Women with breast cancer have a high risk of death. Digitised mammograms can be used to detect the early stage of breast cancer. However, digitised mammograms suffer low contrast appearances that may lead to misdiagnosis. This paper proposes a Computer-Aided Diagnosis (CAD) system of automated classification of breast cancer lesions using a modified image processing technique of Fuzzy Anisotropic Diffusion Histogram Equalization Contrast Adaptive Limited (FADHECAL) incorporated with Multilevel Otsu Thresholding on digitised mammograms. Four main blocks were used in this CAD system, namely; (i) Pre-processing and Enhancement block; (ii) Segmentation block; (iii) Region of Interests (ROIs) Extraction block; and (iv) Classification block. The CAD system was tested on 30 digitised mammograms retrieved from the Mini-Mammographic Image Analysis Society (MIAS) database with various degrees of severity and background tissues. The proposed CAD system showed a high accuracy of 96.67% for the detection of breast cancer lesions.

2019 ◽  
Vol 31 (01) ◽  
pp. 1950007 ◽  
Author(s):  
Ali Mohammad Alqudah ◽  
Huda M. S. Algharib ◽  
Amal M. S. Algharib ◽  
Hanan M. S. Algharib

Breast cancer is the most frequent cancer type that is diagnosed in women. The exact causes of such cancer are still unknown. Early and precise detection of breast cancer using mammogram images or biopsy to provide the required medications can increase the healing percentage. There are much current research efforts to developed a computer aided diagnosis (CAD) system based on mammogram images for detecting and classification of breast masses. In this research, a CAD system is developed for automated segmentation and two-stages classification of breast masses. The first stage includes the classification of the masses into seven classes (normal, calcification, circumscribed, spiculated, ill-defined, architectural distortion, asymmetry), which is done using probabilistic neural network (PNN). The second classification stage is to define the severity of abnormality into two classes (Benign and Malignant) which were done using support vector machine (SVM). The results of applying the proposed method on two mammogram image show that the accuracy of detection and segmentation of the breast mass was 99.8% for mammographic image analysis society database (MIAS-DB) with 322 images and 97.5% for breast cancer digital repository (BCDR), BCDR-F03 and BCDR-DN01 with 936 images, while for the first classification stage has accuracy of 97.08%, sensitivity of 98.30% and specificity of 89.8%, and the second classification stage has an accuracy of 99.18%, sensitivity of 98.42% and specificity of 94.90%.


Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


2018 ◽  
Vol 2 (1) ◽  
pp. 14-18
Author(s):  
Gokalp Cinarer ◽  
Bulent Gursel Emiroglu ◽  
Ahmet Hasim Yurttakal

Breast cancer is cancer that forms in the cells of the breasts. Breast cancer is the most common cancer diagnosed in women in the world. Breast cancer can occur in both men and women, but it's far more common in women. Early detection of breast cancer tumours is crucial in the treatment. In this study, we presented a computer aided diagnosis expectation maximization segmentation and co-occurrence texture features from wavelet approximation tumour image of each slice and evaluated the performance of SVM Algorithm. We tested the model on 50 patients, among them, 25 are benign and 25 malign. The 80% of the images are allocated for training and 20% of images reserved for testing. The proposed model classified 2 patients correctly with success rate of 80% in case of 5 Fold Cross-Validation  Keywords: Breast Cancer, Computer-Aided Diagnosis (CAD), Magnetic Resonance Imaging (MRI);


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Valentina Giannini ◽  
Simone Mazzetti ◽  
Giovanni Cappello ◽  
Valeria Maria Doronzio ◽  
Lorenzo Vassallo ◽  
...  

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Sign in / Sign up

Export Citation Format

Share Document