Nanopolymers: powerful tools in neuroprotection and neuroregeneration

2021 ◽  
Vol 18 ◽  
Author(s):  
Marcelo Garrido dos Santos ◽  
João Pedro Prestes ◽  
Patricia Pranke

: Disorders of the central and peripheral nervous systems are still major human health issues. Researchers have been seeking ways to boost neuroregeneration and neuroprotection since ancient times in order to overcome the brain's, spinal cord's, and peripheral nerves' limited ability to regenerate spontaneously.In this scenario, nanopolymers have shown great potential in terms of drug delivery systems and scaffolds, diminishing the scale of tissue damage and promoting functional recovery in both acute and chronic injuries. A diversity of natural and synthetic polymers has been exploited due to the unique characteristics of these polymers regarding their mechanical and biological properties. These properties dictate how the biomaterial interact with biological systems and how they are distinct in each polymer. This makes them suitable for numerous applications that range from the controlled release of an anti-inflammatory drug to axonal guidance. The versatility of nanopolymers makes them a rich source for therapeutic approaches in the neuroscience field, especially in neuroprotection and neuroregeneration.

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 437
Author(s):  
Milena Álvarez-Viñas ◽  
Sandra Souto ◽  
Noelia Flórez-Fernández ◽  
Maria Dolores Torres ◽  
Isabel Bandín ◽  
...  

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


2021 ◽  
pp. 113908
Author(s):  
Hadeel Kheraldine ◽  
Ousama Rachid ◽  
Abdella M Habib ◽  
Ala-Eddin Al Moustafa ◽  
Ibrahim F. Benter ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Katarzyna Antoniak ◽  
Marlena Dudek-Makuch ◽  
Wiesława Bylka

Licorice has been used in medicine for ancient times. Licorice root contains active compounds with different activities: saponins, flavonoids, coumarins and essential oil. It shows diverse biological properties. This article presents current achievements with clinical trials and creates new possibilities to use licorice in therapy. It has been proved effectiveness of licorice preparations in infectious diseases of respiratory tract, aphthous stomatitis, in dermatoses and also in skin care. The conducted researches on licorice preparations, especially DGL, present on the pharmaceutical market, which are recommended in gastrointestinal ulceration, have not proved their anti-ulcerative effect. The results of some clinical trials may, however, raise doubts due to the small groups and sometimes the lack of randomization or standardization of the studied preparation. Due to its sweet taste, it is used as a corrigens.


2015 ◽  
Vol 9 (2) ◽  
pp. 9-13 ◽  
Author(s):  
Amir Hossein Saeidnejad ◽  
Peyman Rajaei

Essential oils constitute a heterogeneous collection of chemical compounds. Their main characteristics are that they all synthesized by plants and are volatile and mostly soluble in ethanol. They have traditionally been obtained from plants and they have been widely used for insecticidal, medicinal and cosmetic purposes. Essential oils contains about 20–60 components at quite different concentrations and they are characterized by two or three major components at fairly high concentrations. Lately, the essential oils and various extracts of plants have gained special interest as sources of natural antimicrobial and antioxidant agents because of the resistance to antibiotics that some microorganisms have acquired and the possible toxicities of the synthetic antioxidants. Spices consumed daily in different types of food to improve flavors, since ancient times, are well known for their antioxidant and antimicrobial properties. During recent decades, numerous numbers of plants have been monitored for their possible role as repellents and insecticides. In this review, the chemical composition profile of some important medicinal plants was evaluated, then antimicrobial properties of a number of essential oils was compared. Antioxidant activity of some essential oils was also considered. Finally, essential oil repellent properties an an important characteristics was evaluated. Further investigation for available data related to the other biological properties of medicinal plants essential oil is recommended.DOI: http://dx.doi.org/10.3126/ijls.v9i2.12043 International Journal of Life Sciences 9 (2) : 2015; 9-13


Author(s):  
Malathi Balasubramaniyan ◽  
Abdul Azeez Nazeer ◽  
Vimalraj Vinayagam ◽  
Sudarshana Deepa Vijaykumar

Metals such as silver, gold, and copper were used in ancient times for their medicinal properties. When these metals are converted to nanoparticles, they show unique and advanced physicochemical and biological properties due to their enhanced surface to volume ratio. Hence, these properties are utilized by researchers to develop highly specific diagnostic tools as well as a therapeutic agent against cancer. Cancer is a complex disease-causing desolation and death. Early detection and treatment is the only way to evade mortality. This chapter focuses on metal nanoparticles used as a theranostic agent against cancer. It summarizes the synthesis methodology along with their advantages, drawbacks and characterizations. Their recent application in diagnosing and treating cancer has also been highlighted.


2015 ◽  
Vol 51 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Singh Sudarshan ◽  
Bothara Sunil B

The mucilage (MMZ) extracted from the seeds of Manilkara zapota(Linn.) P. Royen syn. using maceration techniques was evaluated for mucoadhesive strength by various in vitro and in vivo methods. The result showed that mucoadhesive strength of seeds mucilage have comparable property toward natural and synthetic polymers such as Guar Gum and hydroxyl propyl methyl cellulose (HPMC E5LV) under the experimental conditions used in this study. Briefly, it could be concluded that the seed mucilage of Manilkara zapota can be used as a pharmaceutical excipient in oral mucoadhesive drug delivery systems. Further, it may be appropriate to study the changes in these properties after chemical modifications.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 627-637 ◽  
Author(s):  
Rosa Tundis ◽  
Monica Loizzo

AbstractThe genus Santolina is a taxonomically complex group of plant species widely distributed in the Mediterranean flora and used in traditional medicine since ancient times for their biological properties, including antimicrobial, anti-inflammatory, antispasmodic, digestive, and analgesic activities. Phytochemical investigations of Santolina species have revealed the presence of terpenoids as the main bioactive constituents of the genus. Coumarins and flavonoids were also identified. This review deals, for the first time, with information on the traditional uses, chemical profile, and biological properties of plants of the genus Santolina in order to provide input for future research prospects.


2020 ◽  
Vol 8 ◽  
Author(s):  
James A. Ezugwu ◽  
Uchechukwu C. Okoro ◽  
Mercy A. Ezeokonkwo ◽  
China R. Bhimapaka ◽  
Sunday N. Okafor ◽  
...  

The increase of antimicrobial resistance (AMR) and antimalarial resistance are complex and severe health issues today, as many microbial strains have become resistant to market drugs. The choice for the synthesis of new dipeptide-carboxamide derivatives is as a result of their wide biological properties such as antimicrobial, anti-inflammatory, and antioxidant activities. The condensation reaction of substituted benzenesulphonamoyl pentanamides with the carboxamide derivatives using peptide coupling reagents gave targeted products (8a-j). The in silico antimalarial and antibacterial studies showed good interactions of the compounds with target protein residues and a higher dock score in comparison with standard drugs. In the in vivo study, compound 8j was the most potent antimalarial agent with 61.90% inhibition comparable with 67% inhibition for Artemisinin. In the in vitro antimicrobial activity, compounds 8a and 8b (MIC 1.2 × 10−3 M and 1.1 × 10−3 M) were most potent against S. aureus; compound 8a, 8b, and 8j with MIC 6.0 × 10−3 M, 5.7 × 10−4 M, and 6.5 × 10−4 M, respectively, were the most active against B. subtilis; compound 8b (MIC 9.5 × 10−4 M) was most active against E.coli while 8a, 8b and 8d were the most active against S. typhi. Compounds 8c and 8h (MIC 1.3 × 10−3 M) each were the most active against C. albicans, while compound 8b (MIC 1.3 × 10−4 M) was most active against A. niger.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Visvikis-Siest ◽  
Danai Theodoridou ◽  
Maria-Spyridoula Kontoe ◽  
Satish Kumar ◽  
Michael Marschler

The first evidence of individual targeting medicine appeared in ancient times thousands of years ago. Various therapeutic approaches have been established since then. However, even nowadays, conventional therapies do not take into consideration individuals' idiosyncrasy and genetic make-up, failing thus to be effective in some cases. Over time, the necessity of a more precise and effective treatment resulted in the development of a scientific field currently known as “personalized medicine.” The numerous technological breakthroughs in this field have acknowledged personalized medicine as the next generation of diagnosis and treatment. Although personalized medicine has attracted a lot of attention the last years, there are still several obstacles hindering its application in clinical practice. These limitations have come to light recently, due to the COVID-19 pandemic. This review describes the “journey” of personalized medicine over time, emphasizing on important milestones achieved through time. Starting from the treatment of malaria, as a first more personalized therapeutic approach, it highlights the need of new diagnostic tools and therapeutic regimens based on individuals' genetic background. Furthermore, it aims at raising global awareness regarding the current limitations and the necessity of a personalized strategy to overpass healthcare problems and hence, the current crisis.


2019 ◽  
pp. 152808371986693 ◽  
Author(s):  
Shirin Rafieian ◽  
Hamid Mahdavi ◽  
Mir Esmaeil Masoumi

Natural polymers such as chitosan and Aloe vera are widely used in novel wound dressings due to their biocompatibility and biodegradability. A problem associated with these polymers is their poor mechanical behavior. Efforts have been made to improve the mechanical properties by mixing synthetic polymers such as PVA, but the role of chitosan and Aloe vera in the final dressing is dimmed. The techniques are also time-consuming and costly and there is still a need for an acceptable and affordable wound dressing which can be made through easily accessible techniques. A new but very simple method is introduced in this work for incorporating PVA nanofibers with Aloe vera-containing chitosan films. Using this method the levels of Aloe vera and chitosan in the system can be optimized at higher scales while benefiting from PVA best mechanical properties as a composite layer. Higher amounts of Aloe vera and chitosan in the system lead to lower product costs and more biocompability. The biological properties of films were examined through cell cytotoxicity and antibacterial tests and compared with Atomic force microscopy results. Physical and mechanical properties of films containing PVA nanofibers were characterized by water vapor permeability, swelling ratio, and tensile tests. The morphology of fibers before and after applying on the films was also observed by scanning electron microscopy. According to the results, this combination of natural and synthetic polymers has led to an affordable, biocompatible, and flexible film for wound dressing applications.


Sign in / Sign up

Export Citation Format

Share Document