scholarly journals Improving Almond Productivity under Deficit Irrigation in Semiarid Zones

2011 ◽  
Vol 5 (1) ◽  
pp. 56-62 ◽  
Author(s):  
I.F. García-Tejero ◽  
V.H. Durán-Zuazo ◽  
L.M. Vélez ◽  
A. Hernández ◽  
A. Salguero ◽  
...  

Sustainable water use is one of the greatest challenges of irrigated agricultural systems. This study presents the results related to the agronomic and physiological response to the deficit irrigation of almond trees (Prunus dulcis DA Webb Mill cv. Guara) under semiarid Mediterranean conditions in the Guadalquivir river basin (SW Spain). Two deficitirrigation strategies were tested: i) regulated deficit irrigation (RDI), which was irrigated at 100% of crop evapotranspiration (ETC) throughout the irrigation period, except during the kernel-filling stage, when these trees where irrigated at 30% ETC, and ii) low-frequency deficit irrigation (LFDI), in which trees were subjected to different irrigationrestriction periods, defined in terms of stem water potential at midday (ΨStem). As control, a fully irrigated treatment (C-100) was used, which received irrigation covering the 100% of ETC. The stem water potential (ΨStem), the stomatal conductance (gS), the photosynthesis rate (Pn) and canopy temperature (TC) were monitored, revealing significant differences mainly in LFDI in comparison with C-100. Also, highly significant relationships were found among plant physiological parameters, showing that the water status is strongly related to the crop water availability. On other hand, in terms of nut yield, there was a notable improvement under LFDI compared with RDI, with increases of 16% in relation to C-100, and with water savings of close to 170 mm. Thus, these findings demonstrate that the LFDI is a sustainable strategy to improve almond productivity as well as water-use efficiency under limited water resources.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.


1997 ◽  
Vol 7 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Kenneth A. Shackel ◽  
H. Ahmadi ◽  
W. Biasi ◽  
R. Buchner ◽  
D. Goldhamer ◽  
...  

To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short- and medium-term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Midday stem water potential has proven to be a useful index of stress in a number of fruit tree species. Day-to-day fluctuations in stem water potential under well-irrigated conditions are well correlated with midday vapor-pressure deficit, and, hence, a nonstressed baseline can be predicted. Measuring stem water potential helped explain the results of a 3-year deficit irrigation study in mature prunes, which showed that deficit irrigation could have either positive or negative impacts on tree productivity, depending on soil conditions. Mild to moderate water stress was economically beneficial. In almond, stem water potential was closely related to overall tree growth as measured by increases in trunk cross-sectional area. In cherry, stem water potential was correlated with leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once stem water potential dropped to between −1.5 to −1.7 MPa. In pear, fruit size and other fruit quality attributes (soluble solids, color) were all closely associated with stem water potential. In many of these field studies, systematic tree-to-tree differences in water status were large enough to obscure irrigation treatment effects. Hence, in the absence of a plant-based measure of water stress, it may be difficult to determine whether the lack of an irrigation treatment effect indicates the lack of a physiological response to plant water status, or rather is due to treatment ineffectiveness in influencing plant water status. These data indicate that stem water potential can be used to quantify stress reliably and guide irrigation decisions on a site-specific basis.


2021 ◽  
Vol 13 (9) ◽  
pp. 1837
Author(s):  
Eve Laroche-Pinel ◽  
Sylvie Duthoit ◽  
Mohanad Albughdadi ◽  
Anne D. Costard ◽  
Jacques Rousseau ◽  
...  

Wine growing needs to adapt to confront climate change. In fact, the lack of water becomes more and more important in many regions. Whereas vineyards have been located in dry areas for decades, so they need special resilient varieties and/or a sufficient water supply at key development stages in case of severe drought. With climate change and the decrease of water availability, some vineyard regions face difficulties because of unsuitable variety, wrong vine management or due to the limited water access. Decision support tools are therefore required to optimize water use or to adapt agronomic practices. This study aimed at monitoring vine water status at a large scale with Sentinel-2 images. The goal was to provide a solution that would give spatialized and temporal information throughout the season on the water status of the vines. For this purpose, thirty six plots were monitored in total over three years (2018, 2019 and 2020). Vine water status was measured with stem water potential in field measurements from pea size to ripening stage. Simultaneously Sentinel-2 images were downloaded and processed to extract band reflectance values and compute vegetation indices. In our study, we tested five supervised regression machine learning algorithms to find possible relationships between stem water potential and data acquired from Sentinel-2 images (bands reflectance values and vegetation indices). Regression model using Red, NIR, Red-Edge and SWIR bands gave promising result to predict stem water potential (R2=0.40, RMSE=0.26).


2021 ◽  
Author(s):  
Marta Rodríguez-Fernández ◽  
María Fandiño ◽  
Xesús Pablo González ◽  
Javier J. Cancela

<p>The estimation of the water status in the vineyard, is a very important factor, in which every day the winegrowers show more interest since it directly affects the quality and production in the vineyards. The situation generated by COVID-19 in viticulture, adds importance to tools that provide information of the hydric status of vineyard plants in a telematic way.</p><p>In the present study, the stem water potential in the 2018 and 2019 seasons, is analysed in a vineyard belonging to the Rias Baixas wine-growing area (Vilagarcia de Arousa, Spain), with 32 sampling points distributed throughout the plot, which allows the contrast and validation with the remote sensing methodology to estimate the water status of the vineyard using satellite images.</p><p>The satellite images have been downloaded from the Sentinel-2 satellite, on the closets available dates regarding the stem water potential measurements, carried out in the months of June to September, because this dates are considered the months in which vine plants have higher water requirements.</p><p>With satellite images, two spectral index related to the detection of water stress have been calculated: NDWI (Normalized Difference Water Index) and MSI (Moisture Stress Index). Stem water potential measurements, have allowed a linear regression with both index, to validate the use of these multispectral index to determine water stress in the vineyard.</p><p>Determination coefficients of r<sup>2</sup>=0.62 and 0.67, have been obtained in July and August 2018 and 0.54 in June of 2019 for the NDWI index, as well as values of 0.53 and 0.63 in July 2018 and June 2019 respectively, when it has been analysed the MSI index.</p><p>Between both seasons, the difference observed, that implies slightly greater water stress in 2019, is reflected in the climate conditions during the summer months, with an average accumulated rainfall that doesn’t exceed 46 mm of water. Although, the NDWI index has allowed to establish better relationships in the 2018 season respect to the MSI index and the 2019 season, (r<sup>2</sup>=0.60 NDWI in 2018), as well as greater differences in terms of water stress presented in the vineyard.</p><p>With the spectral index calculated, it has been possible to validate the use of these index for the determination of the water stress of the vineyard plants, as an efficient, fast and less expensive method, which allows the application of an efficient irrigation system in the vineyard.</p>


2011 ◽  
Vol 38 (5) ◽  
pp. 372 ◽  
Author(s):  
Gregorio Egea ◽  
Ian C. Dodd ◽  
María M. González-Real ◽  
Rafael Domingo ◽  
Alain Baille

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.


OENO One ◽  
2014 ◽  
Vol 48 (2) ◽  
pp. 123 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
Emiliano Trigo-Córdoba ◽  
Yolanda Bouzas-Cid

<p style="text-align: justify;"><strong>Aims</strong>: To evaluate the usefulness of predawn water potential (<strong>Ψ</strong><sub>pd</sub>) to assess the water status of Galician grapevine cultivars for irrigation purposes.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Three Galician white grapevine cultivars (Albariño, Godello and Treixadura) were subjected to rain-fed and irrigation conditions during the 2013 growing season. Diurnal changes in leaf water potential (<strong>Ψ</strong><sub>l</sub>) were measured using a pressure chamber on days with high evapotranspiration demand. Stem water potential (<strong>Ψ</strong><sub>s</sub>) was measured at midday. <strong>Ψ</strong><sub>pd</sub> was not able to discriminate between treatments, whereas <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> at midday were able to detect significant differences in water status among plants.</p><p style="text-align: justify;"><strong>Conclusion</strong>: <strong>Ψ</strong><sub>pd</sub> was not useful to evaluate vine water status under the Galician climatic conditions. In contrast, both <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> were effective for detecting differences between treatments and can thus be used for irrigation management purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This is the first study evaluating water status of Galician grapevine cultivars. It also provides useful information about the strategy for its control through measurements of midday <strong>Ψ</strong>l or <strong>Ψ</strong>s.</p>


2016 ◽  
Vol 34 (2) ◽  
pp. 161-173 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
Francisco Pérez-Sarmiento ◽  
Rosalía Alcobendas ◽  
Juan José Alarcón ◽  
Oussama Mounzer ◽  
...  

2002 ◽  
Vol 127 (3) ◽  
pp. 448-454 ◽  
Author(s):  
L.E. Williams ◽  
F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.


Sign in / Sign up

Export Citation Format

Share Document