Error-aware Design Procedure to Implement Energy-efficient Approximate Squaring Hardware

2020 ◽  
Vol 10 (4) ◽  
pp. 471-477
Author(s):  
Merin Loukrakpam ◽  
Ch. Lison Singh ◽  
Madhuchhanda Choudhury

Background:: In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. Objective:: In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. Methods: Two-segment, four-segment and eight-segment accurate and energy-efficient 32-bit approximate designs for squaring were implemented using this method. The proposed 2-segment approximate squaring hardware showed 12.5% maximum relative error and delivered up to 55.6% energy saving when compared with state-of-the-art approximate multipliers used for squaring. Results: The proposed 4-segment hardware achieved a maximum relative error of 3.13% with up to 46.5% energy saving. Conclusion:: The proposed 8-segment design emerged as the most accurate squaring hardware with a maximum relative error of 0.78%. The comparison also revealed that the 8-segment design is the most efficient design in terms of error-area-delay-power product.

Author(s):  
Victoria Koshevaya ◽  
Oleksandr Koshevyi ◽  
Oleksandr Trobiuk

The article considers the creation of systematic graphically-interpreted models for matrix analysis of energy saving measures in the design of residential energy efficient and passive buildings, reconstruction of residential and historical buildings and the creation of energy-active architectural objects using alternative energy sources. Energy-efficient design of new buildings and modernization of old ones remains an urgent task. Ukraine's construction organizations are increasingly interested in reducing energy consumption and introducing energy-saving technologies. Scientists are trying to make housing more energy efficient, namely, consuming less energy compared to ordinary buildings and not polluting the environment. Increasing the level of energy supply and reducing the individual costs of servicing the house will allow solving the problem of creating graphically interpreted models of energy efficiency of the building and energy costs. The analysis is based on a combination of active and passive energy conservation measures and takes into account possible limitations based on a system approach in the construction of an integrated model of an energy active building. The analysis is based on a combination of active and passive energy saving measures and takes into account possible limitations based on a systematic approach by creation a comprehensive model of an energy-active building.


2014 ◽  
Vol 962-965 ◽  
pp. 1559-1562
Author(s):  
Hai Xian Yan

We simulates the thermal load of Shanxi Xinhua Printing Factory by using the software of DeST. Through choosing different parameters, it obtained that roofing materials have a great impact on the whole heat load system, wall window ratio and wall materials is very small. The result is of great significance to the construction of energy-efficient design of new plant.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


Author(s):  
Kai Zhang ◽  
Ningning Zhu ◽  
Mingming Zhang ◽  
Lei Wang ◽  
Jun Xing

Recently, the light-emitting diode (LED) has been considered as an energy-saving and environment-friendly lighting technology,which is ten times more energy efficient than conventional incandescent lights. As an emerging photoelectric material,...


2014 ◽  
Vol 931-932 ◽  
pp. 1488-1494
Author(s):  
Supanut Kaewumpai ◽  
Suwon Tangmanee ◽  
Anirut Luadsong

A meshless local Petrov-Galerkin method (MLPG) using Heaviside step function as a test function for solving the biharmonic equation with subjected to boundary of the second kind is presented in this paper. Nodal shape function is constructed by the radial point interpolation method (RPIM) which holds the Kroneckers delta property. Two-field variables local weak forms are used in order to decompose the biharmonic equation into a couple of Poisson equations as well as impose straightforward boundary of the second kind, and no special treatment techniques are required. Selected engineering numerical examples using conventional nodal arrangement as well as polynomial basis choices are considered to demonstrate the applicability, the easiness, and the accuracy of the proposed method. This robust method gives quite accurate numerical results, implementing by maximum relative error and root mean square relative error.


2012 ◽  
Vol 16 (6) ◽  
pp. 3559-3573 ◽  
Author(s):  
R. Pacheco ◽  
J. Ordóñez ◽  
G. Martínez

Sign in / Sign up

Export Citation Format

Share Document