h2 production
Recently Published Documents


TOTAL DOCUMENTS

2013
(FIVE YEARS 819)

H-INDEX

99
(FIVE YEARS 30)

2022 ◽  
Vol 253 ◽  
pp. 115169
Author(s):  
Chunxiao Zhang ◽  
Yingjie Li ◽  
Liguo Yang ◽  
Xiaoxu Fan ◽  
Leizhe Chu

2022 ◽  
Author(s):  
George D Metcalfe ◽  
Frank Sargent ◽  
Michael Hippler

Escherichia coli (E. coli) is a facultative anaerobe that can grow in a variety of environmental conditions. In the complete absence of O2, E. coli can perform a mixed-acid fermentation that contains within it an elaborate metabolism of formic acid. In this study, we use cavity-enhanced Raman spectroscopy (CERS), FTIR, liquid Raman spectroscopy, isotopic labelling, and molecular genetics to make advances in the understanding of bacterial formate and H2 metabolism. It is shown that, under anaerobic conditions, formic acid is generated endogenously, excreted briefly from the cell, and then taken up again to be disproportionated to H2 and CO2 by formate hydrogenlyase (FHL-1). However, exogenously added D-labelled formate behaves quite differently from the endogenous formate and is taken up immediately, independently, and possibly by a different mechanism, by the cell and converted to H2 and CO2. Our data support an anion-proton symport model for formic acid transport. In addition, when E. coli was grown in a microaerobic environment it was possible to analyse aspects of formate and O2 respiration occurring alongside anaerobic metabolism. While cells growing under microaerobic conditions generated endogenous formic acid, no H2 was produced. However, addition of exogenous formate at the outset of cell growth did induce FHL-1 biosynthesis and resulted in formate-dependent H2 production in the presence of O2.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhenhua Li ◽  
Yifan Yan ◽  
Si-Min Xu ◽  
Hua Zhou ◽  
Ming Xu ◽  
...  

AbstractElectrochemical alcohols oxidation offers a promising approach to produce valuable chemicals and facilitate coupled H2 production. However, the corresponding current density is very low at moderate cell potential that substantially limits the overall productivity. Here we report the electrooxidation of benzyl alcohol coupled with H2 production at high current density (540 mA cm−2 at 1.5 V vs. RHE) over a cooperative catalyst of Au nanoparticles supported on cobalt oxyhydroxide nanosheets (Au/CoOOH). The absolute current can further reach 4.8 A at 2.0 V in a more realistic two-electrode membrane-free flow electrolyzer. Experimental combined with theoretical results indicate that the benzyl alcohol can be enriched at Au/CoOOH interface and oxidized by the electrophilic oxygen species (OH*) generated on CoOOH, leading to higher activity than pure Au. Based on the finding that the catalyst can be reversibly oxidized/reduced at anodic potential/open circuit, we design an intermittent potential (IP) strategy for long-term alcohol electrooxidation that achieves high current density (>250 mA cm−2) over 24 h with promoted productivity and decreased energy consumption.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yumin Zhang ◽  
Jianhong Zhao ◽  
Hui Wang ◽  
Bin Xiao ◽  
Wen Zhang ◽  
...  

AbstractSingle-atom catalysts anchoring offers a desirable pathway for efficiency maximization and cost-saving for photocatalytic hydrogen evolution. However, the single-atoms loading amount is always within 0.5% in most of the reported due to the agglomeration at higher loading concentrations. In this work, the highly dispersed and large loading amount (>1 wt%) of copper single-atoms were achieved on TiO2, exhibiting the H2 evolution rate of 101.7 mmol g−1 h−1 under simulated solar light irradiation, which is higher than other photocatalysts reported, in addition to the excellent stability as proved after storing 380 days. More importantly, it exhibits an apparent quantum efficiency of 56% at 365 nm, a significant breakthrough in this field. The highly dispersed and large amount of Cu single-atoms incorporation on TiO2 enables the efficient electron transfer via Cu2+-Cu+ process. The present approach paves the way to design advanced materials for remarkable photocatalytic activity and durability.


2022 ◽  
Author(s):  
Gabriella R. Ferreira ◽  
Francisco G. E. Nogueira ◽  
Alessandra F. Lucrédio ◽  
Elisabete M. Assaf

2022 ◽  
Vol 131 (1) ◽  
pp. 013306
Author(s):  
Ghasiram Dey ◽  
Shirish A. Nadkarni ◽  
Madhu A. Toley ◽  
Vidya Vidya

Author(s):  
Chan Kim ◽  
Kimoon Lee ◽  
Il-Han Yoo ◽  
Yu-Jin Lee ◽  
Safira Ramadhani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document