Nickel Foam Surface Defect Identification Based on Improved Probability Extreme Learning Machine

2020 ◽  
Vol 13 (4) ◽  
pp. 604-610
Author(s):  
Binfang Cao ◽  
Jianqi Li ◽  
Fangyan Nie

Background: In the nickel foam production process, the detection and identification of surface defects relies heavily upon the operators’ experiences. However, the manual observation is of high labor intensity, low efficiency, strong subjectivity and high error rate. Objective: Therefore, this paper proposes a new method for the nickel foam surface defect detection and identification, based on an improved probability extreme learning machine. Methods: At first, a machine vision system for nickel foam is established, and gray level cooccurrence matrix is used to calculate defect features, which are inputted into extreme learning machine to train the defect classifier. Then a composite differential evolution algorithm is used to optimize the input weights and hidden layer thresholds. Finally, an integrated probabilistic ELM is proposed to avoid misjudgments when multiple probabilities values are almost identical. Conclusion: Experiments show that the proposed method can achieve a defect-identifying accuracy, which meets an enterprise’s needs.

2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097651
Author(s):  
Zhendong He ◽  
Jie Liu ◽  
Liying Jiang ◽  
Suna Zhao ◽  
Lei Zhang ◽  
...  

Surface defects affect the quality and safety of oil seals. It is a challenge to detect such defects in a vision system because of the unequal reflection property of oil seal surfaces and low contrast between the defect and the background. This article proposes a visual detection method (VDM) for oil seal surface defects and outlines two key issues of VDMs. First, we present a superpixel segmentation algorithm based on the significant gray level variation in the radial direction of an oil seal surface image. This image is then divided into several ring belts. Subsequently, considering the reflection inequality and low contrast, we propose a new circumferential background difference algorithm based on the small variation along the circumferential direction of the image. This algorithm eliminates the influence of the reflection inequality and improves the contrast distinction between the defects and the background. The experimental results verify the effectiveness of the proposed method with a recall and precision as high as 95.2% and 86.8%, respectively.


2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hou Jingzhong ◽  
Xia Kewen ◽  
Yang Fan ◽  
Zu Baokai

Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP) optimized multiple kernel relevance vector machine (MKRVM), which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.


2018 ◽  
Vol 8 (9) ◽  
pp. 1678 ◽  
Author(s):  
Yiting Li ◽  
Haisong Huang ◽  
Qingsheng Xie ◽  
Liguo Yao ◽  
Qipeng Chen

This paper aims to achieve real-time and accurate detection of surface defects by using a deep learning method. For this purpose, the Single Shot MultiBox Detector (SSD) network was adopted as the meta structure and combined with the base convolution neural network (CNN) MobileNet into the MobileNet-SSD. Then, a detection method for surface defects was proposed based on the MobileNet-SSD. Specifically, the structure of the SSD was optimized without sacrificing its accuracy, and the network structure and parameters were adjusted to streamline the detection model. The proposed method was applied to the detection of typical defects like breaches, dents, burrs and abrasions on the sealing surface of a container in the filling line. The results show that our method can automatically detect surface defects more accurately and rapidly than lightweight network methods and traditional machine learning methods. The research results shed new light on defect detection in actual industrial scenarios.


2014 ◽  
Vol 1006-1007 ◽  
pp. 773-778 ◽  
Author(s):  
Chuan Ren ◽  
Xiao Yu Xiu ◽  
Guo Hui Zhou

This paper proposed a new method of surface defect detection of rolling element based on computer vision, which adopted CCD digital camera as image sensor, and used digital image processing techniques to defect the surface defects of rolling element. The main steps include collect image, use an improved median filter to reduce the noise, increase or decrease the exposure to achieve the image enhancement, create a binary image with threshold method and detect the edge of the image, and use subtraction method for surface defects identification. The experiment indicates that the above methods the advantages of simple, the capability of noise resistance, high speed processing and better real-time.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhenpeng Tang ◽  
Tingting Zhang ◽  
Junchuan Wu ◽  
Xiaoxu Du ◽  
Kaijie Chen

The prediction research of the stock market prices is of great significance. Based on the secondary decomposition techniques of variational mode decomposition (VMD) and ensemble empirical mode decomposition (EEMD), this paper constructs a new hybrid prediction model by combining with extreme learning machine (ELM) optimized by the differential evolution (DE) algorithm. The hybrid model applies VMD technology to the original stock index price sequence to obtain different modal components and the residual item, then applies EEMD technology to the residual item, and then superimposes the prediction results of the DE-ELM model for each modal component and the residual item to obtain the final prediction results. In order to verify the validity of the model, this paper constructs a series of benchmark models and, respectively, tests the samples of the S&P 500 index and the HS300 index by one-step, three-step, and five-step forward forecasting. The empirical results show that the hybrid model proposed in this paper achieves the best prediction performance in all prediction scenarios, which indicates that the modeling idea focusing on the residual term effectively improves the prediction performance of the model. In addition, the prediction effect of the model combined with the decomposition technology is superior to the single DE-ELM model, where the secondary decomposition technique has a significant decomposition advantage compared to the single decomposition technique.


Sign in / Sign up

Export Citation Format

Share Document