Reconfigurable Characteristics of Radiation Pattern in Bipolar-excited Plasma Antenna System

Author(s):  
Xueping Lu
Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


Author(s):  
Michal Dzuris ◽  
Norbert Grilli ◽  
Imrich Szolik ◽  
Jozef Hallon

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2456
Author(s):  
Kok Jiunn Ng ◽  
Mohammad Tariqul Islam ◽  
Adam M. Alevy ◽  
Mohd. Fais Mansor

This paper presents an ultralow profile, low passive intermodulation (PIM), and super-wideband in-building ceiling mount antenna that covers both the cellular and public safety ultra high frequency (UHF) band for distributed antenna system (DAS) applications. The proposed antenna design utilizes a modified 2-D planar discone design concept that is miniaturized to fit into a small disc-shaped radome. The 2-D planar discone has an elliptical-shaped disc monopole and a bell-shaped ground plane, a stub at the shorting path, with asymmetrical structure and an additional proximity coupling patch to maximize the available electrical path to support the 350 MHz band range. The proposed design maximizes the radome area with a reduction of about 62% compared to similar concept type antennas. Besides, the proposed design exhibits an improved radiation pattern with null reduction compared to a typical dipole/monopole when lies at the horizontal plane. A prototype was manufactured to demonstrate the antenna performance. The VSWR and radiation pattern results agreed with the simulated results. The proposed antenna achieves a band ratio of 28.57:1 while covering a frequency range of 350–10000 MHz. The measured passive intermodulation levels are better than −150 dBc (2 × 20 Watts) for 350, 700 and 1920 MHz bands.


2019 ◽  
Vol 30 ◽  
pp. 05021
Author(s):  
Alexander Zhuravlev ◽  
Alexander Golovkov ◽  
Polina Terenteva ◽  
Victor Malyshev ◽  
Michail Shmyrin ◽  
...  

Ommidirectional in azimuth plane antennas with horizontal polarization are used in communication systems of McWILL standard, digital television systems of DVB-T2 standard, radio monitoring systems, semi-active ranging using the target illumination with the television broadcast signal, and many other cases. In many cases, radar and radio monitoring systems use phase methods to determine the azimuth and elevation angle of the target. To view all azimuthal angles, ring arrays consisting of omnidirectional emitters, usually also represented by ring arrays, are used. This paper studies the characteristics of an omnidirectional radiating element of electrically small horizontal dipole elements. An expression is derived that relates the radius of the dipole ring array to the number of dipoles and the variation of the resulting radiation pattern. The results are confirmed by experimental studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Zong-sheng Chen ◽  
Li-fang Ma ◽  
Jia-chun Wang

The distribution of the electron density along a plasma antenna can influence the antenna’s performance. But little has been done in this regard in former studies. In this paper, a model of a practical plasma antenna with an inhomogeneous distribution of electron density is founded according to the transmission-line equivalent theory of a metal monopole, from which the current distribution and the radiation pattern of a plasma antenna with appropriate parameters are calculated. The results show that the electrical current distribution, the maximum radiation direction, and the beamwidth of a plasma antenna vary with electron density distributions. To validate the model, the plasma antenna with the same parameters is also simulated based on electromagnetic software HFSS. It is found that the results from the two ways are almost consistent.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1372
Author(s):  
Muhammad Kamran Shereen ◽  
Muhammad Irfan Khattak ◽  
Mu’ath Al-Hasan

This paper presents a novel combo-reconfigurable architecture for the frequency and radiation patterning of a novel antenna system for future fifth-generation (5G) millimeter-wave mobile communication. The tuning system independently controls the frequency and radiation pattern shifts, without letting them affect each other. The proposed antenna consists of two patches, radiating at 28 GHz and 38 GHz. A negative-channel metal–oxide–semiconductor (NMOS) transistor was used as a switch for ON/OFF states. Frequency reconfiguration was controlled by switches SD1 and SD2, while pattern reconfigurability was achieved by SD3–SD18. The desired resonant frequencies of 28 GHz and 38 GHz were achieved by varying patch dimensions through the ON and OFF states of the SD1 and SD2 switches. Similarly, parasitic stubs on the ground are used to control surface currents, which results in pattern reconfiguration. The results were analyzed for 18 different combinations of the switch states. Adding/removing parasitic stubs and switches changed the beam steering angle (by 45° shift) from 0° to 180°, which modified the stub dimensions and changed the beam-width of the main lobe.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Haitham Alsaif ◽  
Mohamed A. H. Eleiwa

A novel compact planar 2 × 2 antenna system with super-wide bandwidth is presented in this paper. The MIMO antenna has four square-shaped patches with two slots in each that are interconnected with each other using four strip lines printed on a substrate of Rogers Duroid RT 5880 with relative permittivity of εr = 2.2 and tangent loss of δ = 0.0009. The proposed antenna system has a partial ground plane with two enhancement fractured slots. The design is characterized by a super-wide impedance starting from 15.2 to 62 GHz (a bandwidth of 46.8 GHz) and compact total system size of 11.2 × 15.25 mm2 with a thickness of 0.12 mm. The proposed MIMO design has omnidirectional radiation pattern for far field and the achieved peak gain reaches 13.5 dBi. The presented planar antenna which relies on computer aided design, has been designed and simulated using an industrial standard simulation code. Its performance results showed that the MIMO design is characterized by super wide bandwidth, omnidirectional radiation pattern, and high-power gain with miniaturized physical size; thus, it is suitable for radio-frequency identification (RFID) systems, fifth-generation applications, ultra-wideband systems, and others.


Sign in / Sign up

Export Citation Format

Share Document