scholarly journals The Improvement of the Operational Characteristics of the Ventilated Front Brake Discs

2022 ◽  
Author(s):  
D. Boldyrev

Abstract. Wear and crack resistance are important operational characteristics of brake discs. The paper presents the most optimal concentration of sulfur in cast iron, which ensures its least wear, and discusses the implementation of the front brake discs manufacture from Gh190 cast iron having 0.11 ... 0.13% sulfur content at contrast to the 0.01 ... 0.03% sulfur content, and proves the change leads to a significant increase in wear and frictional properties of the discs. In the course of research, it is found that the increase in the crack resistance of brake discs is possible due to the improvement of the thermophysical properties of cast iron with the increase in the carbon content (up to 3.55 ... 3.60%) and the decrease in the silicon content (up to 1.45 ... 1.50%), while the carbon equivalent is constant.

2014 ◽  
Vol 1028 ◽  
pp. 62-67 ◽  
Author(s):  
Wen Bang Gong ◽  
Yun Zhang ◽  
Huan Liu ◽  
Hua Fang Wang ◽  
Yu Qin Wu ◽  
...  

In this paper, a formula for calculation of carbon content during austenitizing of cast iron was developed with consideration of the effect of silicon content. According to this formula, carbon content of austenite at a certain austenization temperature for a cast iron with given composition can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the diagram of Cax, Tx and silicon content during the austenitizing process of cast iron was made.


2009 ◽  
Vol 294 ◽  
pp. 105-111
Author(s):  
Wen Bang Gong ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of the carbon content during the austenitizing of cast iron was deduced, considering the effect of silicon content upon the heat-treatment parameter. According to this formula, the carbon content of the austenite at a certain austenization temperature for a cast iron with given components can be easily calculated, and the austenization temperature required to give the expected carbon content in the austenite can also be determined. Moreover, according to the relationship between the austenization temperature Tx and the associated carbon content Cax,, and considering the effect of the silicon content, a diagram showing Cax, Tx and the silicon content during the austenitizing of cast iron was prepared.


2011 ◽  
Vol 704-705 ◽  
pp. 11-15 ◽  
Author(s):  
Wen Bang Gong ◽  
Li Luo ◽  
Guo Dong Chen ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of carbon content during austenitizing of cast iron was deduced, considering the effect of silicon content. According to this formula, carbon content of austenite at a certain austenization temperature for a cast iron with given composition can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the carbon content of the austenite in the commonly used cast iron during heat treatment was calculated. The formula can be as a theoretical basis for determined austenization temperature and carbon content in austenite during heat treatment of cast iron, in particular, can play an important role in heat treatment of austempered ductile iron. Keywords: cast iron heat treatment; diffusion of carbon; carbon content in austenite


2014 ◽  
Vol 971-973 ◽  
pp. 44-48
Author(s):  
Ya Li Sun

Though the study of carbon content on the microstructure and properties of gray cast iron, mechanical properties test as well as metallographic observation, we could see that the mobility of molten iron is the best when carbon equivalent control at around 4.3%; Liquid iron tend to precipitate A or B type graphite and enhance the casting organization and property when carbon content was increased properly.


Author(s):  
M. Kuznetsov ◽  
G. Kryachko

At two blast furnaces (BF) with a volume of 1386 and 1500 m³, the influence of the parameters of blast and slag modes on the content of silicon and sulfur in cast iron was investigated. The blast mode was evaluated by the consumption of pulverized coal fuel (PCF) and oxygen, the slag mode was evaluated by its basicity CaO / SiO₂. It was found that the injection of pulverized coal into the hearth of 1500 m³ BF in the range of flow rates from 108 to 120 g/m³·s, and in the hearth of 1386 m³ BF in the range from 90 to 110 g/m³·s was accompanied by a decrease in the silicon content in cast iron. The deterioration of the transition of silicon into cast iron with an increase in the consumption of pulverized coal is explained by the complex effect of factors that retard the reduction of its oxides. Extreme relationships were also established between the intensity of melting in terms of oxygen consumption and the silicon content in the cast iron of the furnaces under study. The extreme dependences of the studied variables are due to the dual effect of the melting intensity on the reduction of silicon oxides: a reduction in the time of contact of the metal with furnace gases reduces the possibility of transition of silicon into metal, and an increase in the volume of the silicon reduction zone improves these possibilities. When operating a 1386 m³ furnace on calcium slag in the range of CaO / SiO₂ basicity change from 0.9 to 1.3 without removing the blast furnace operation periods associated with a change in operating conditions, the absence of dependence of the silicon content in cast iron on the CaO/SiO₂ modulus was found/ In its turn this indicated the complexity of factors influencing the reduction of silicon oxides. In the same range of changes in basicity and different operating modes of the furnace, a noticeable effect of basicity on the sulfur content in cast iron was observed, which indicates the decisive role of basicity in the process of blast-furnace desulfurization.


2013 ◽  
Vol 772 ◽  
pp. 52-56 ◽  
Author(s):  
Wen Bang Gong ◽  
Yun Zhang ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of carbon content during austenitizing of cast iron was deduced, considering the effect of silicon content on the heat treatment parameter. According to this formula, the carbon content of the austenite in a certain austenization temperature for a cast iron with given components can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the diagram of Cax, Tx and silicon content during the austenitizing process of cast iron was made.


2021 ◽  
Vol 36 (6) ◽  
pp. 903-910
Author(s):  
Yihong Zhao ◽  
Qianyu Chen ◽  
Zhiwei Zheng ◽  
Pei Cao ◽  
Ziyu Gong ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 93-98 ◽  
Author(s):  
M. S. Soiński ◽  
A. Jakubus ◽  
K. Skurka

Abstract The work determined the influence of aluminium in the amount from about 1% to about 7% on the graphite precipitates in cast iron with relatively high silicon content (3.4% to 3.90%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. The performed treatment resulted in occurring of compact graphite precipitates, mainly nodular and vermicular, of various size. The following parameters were determined: the area percentage occupied by graphite, perimeters of graphite precipitates per unit area, and the number of graphite precipitates per unit area. The examinations were performed by means of computer image analyser, taking into account four classes of shape factor. It was found that as the aluminium content in cast iron increases from about 1.1% to about 3.4%, the number of graphite precipitates rises from about 700 to about 1000 per square mm. For higher Al content (4.2% to 6.8%) this number falls within the range of 1300 - 1500 precipitates/mm2. The degree of cast iron spheroidization increases with an increase in aluminium content within the examined range, though when Al content exceeds about 2.8%, the area occupied by graphite decreases. The average size of graphite precipitates is equal to 11-15 μm in cast iron containing aluminium in the quantity from about 1.1% to about 3.4%, and for higher Al content it decreases to about 6 μm.


Sign in / Sign up

Export Citation Format

Share Document