Some Aspects of Model Theory and Finite Structures

2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.

1998 ◽  
Vol 4 (4) ◽  
pp. 345-398 ◽  
Author(s):  
Martin Grohe

Throughout the development of finite model theory, the fragments of first-order logic with only finitely many variables have played a central role. This survey gives an introduction to the theory of finite variable logics and reports on recent progress in the area.For each k ≥ 1 we let Lk be the fragment of first-order logic consisting of all formulas with at most k (free or bound) variables. The logics Lk are the simplest finite-variable logics. Later, we are going to consider infinitary variants and extensions by so-called counting quantifiers.Finite variable logics have mostly been studied on finite structures. Like the whole area of finite model theory, they have interesting model theoretic, complexity theoretic, and combinatorial aspects. For finite structures, first-order logic is often too expressive, since each finite structure can be characterized up to isomorphism by a single first-order sentence, and each class of finite structures that is closed under isomorphism can be characterized by a first-order theory. The finite variable fragments seem to be promising candidates with the right balance between expressive power and weakness for a model theory of finite structures. This may have motivated Poizat [67] to collect some basic model theoretic properties of the Lk. Around the same time Immerman [45] showed that important complexity classes such as polynomial time (PTIME) or polynomial space (PSPACE) can be characterized as collections of all classes of (ordered) finite structures definable by uniform sequences of first-order formulas with a fixed number of variables and varying quantifier-depth.


Author(s):  
Shawn Hedman

This final chapter unites ideas from both model theory and complexity theory. Finite model theory is the part of model theory that disregards infinite structures. Examples of finite structures naturally arise in computer science in the form of databases, models of computations, and graphs. Instead of satisfiability and validity, finite model theory considers the following finite versions of these properties. • A first-order sentence is finitely satisfiable if it has a finite model. • A first-order sentence is finitely valid if every finite structure is a model. Finite model theory developed separately from the “classical” model theory of previous chapters. Distinct methods and logics are used to analyze finite structures. In Section 10.1, we consider various finite-variable logics that serve as useful languages for finite model theory. We define variations of the pebble games introduced in Section 9.2 to analyze the expressive power of these logics. Pebble games are one of the few tools from classical model theory that is useful for investigating finite structures. In Section 10.2, it is shown that many of the theorems from Chapter 4 are no longer true when restricted to finite models. There is no analog for the Completeness and Compactness theorems in finite model theory. Moreover, we prove Trakhtenbrot’s theorem which states that the set of finitely valid first-order sentences is not recursively enumerable. Descriptive complexity is the subject of 10.3. This subject describes the complexity classes discussed in Chapter 7 in terms of the logics introduced in Chapter 9. We prove Fagin’s theorem relating the class NP to existentional second-order logic. We prove the Cook–Levin theorem as a consequence of Fagin’s Theorem. This theorem states that the Satisfiability Problem for Propositional Logic is NP-complete. We conclude this chapter (and this book) with a section describing the close connection between logic and the P = NP problem. In this section, we discuss appropriate logics for the study of finite models. First-order logic, since it describes each finite model up to isomorphism, is too strong. For this reason, we must weaken the logic. It may seem counter-intuitive that we should gain knowledge by weakening our language.


Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2012 ◽  
Vol 77 (3) ◽  
pp. 729-765 ◽  
Author(s):  
Emanuel Kieroński ◽  
Martin Otto

AbstractWe study first-order logic with two variables FO2 and establish a small substructure property. Similar to the small model property for FO2 we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO2 under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO2 has the finite model property and is complete for non-deterministic exponential time, just as for plain FO2. With two equivalence relations, FO2 does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO2 is undecidable.


1985 ◽  
Vol 50 (3) ◽  
pp. 773-780
Author(s):  
Mitchell Spector

AbstractWe initiate the study of model theory in the absence of the Axiom of Choice, using the Axiom of Determinateness as a powerful substitute. We first show that, in this context, is no more powerful than first-order logic. The emphasis then turns to upward Löwenhein-Skolem theorems; ℵ1 is the Hanf number of first-order logic, of , and of a strong fragment of , The main technical innovation is the development of iterated ultrapowers using infinite supports; this requires an application of infinite-exponent partition relations. All our theorems can be proven from hypotheses weaker than AD.


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


1979 ◽  
Vol 44 (4) ◽  
pp. 549-558
Author(s):  
Carl F. Morgenstern

In this paper we indicate how compact languages containing the Magidor-Malitz quantifiers Qκn in different cardinalities can be amalgamated to yield more expressive, compact languages.The language Lκ<ω, originally introduced by Magidor and Malitz [9], is a natural extension of the language L(Q) introduced by Mostowski and investigated by Fuhrken [6], [7], Keisler [8] and Vaught [13]. Intuitively, Lκ<ω is first-order logic together with quantifiers Qκn (n ∈ ω) binding n free variables which express “there is a set X of cardinality κ such than any n distinct elements of X satisfy …”, or in other words, iff the relation on determined by φ contains an n-cube of cardinality κ. With these languages one can express a variety of combinatorial statements of the type considered by Erdös and his colleagues, as well as concepts in universal algebra which are beyond the scope of first-order logic. The model theory of Lκ<ω has been further developed by Badger [1], Magidor and Malitz [10] and Shelah [12].We refer to a language as being < κ compact if, given any set of sentences Σ of the language, if Σ is finitely satisfiable and ∣Σ∣ < κ, then Σ has a model. The phrase countably compact is used in place of <ℵ1 compact.


1985 ◽  
Vol 50 (4) ◽  
pp. 865-873
Author(s):  
H. Andréka ◽  
I. Németi

The theory of cylindric algebras (CA's) is the algebraic theory of first order logics. Several ideas about logic are easier to formulate in the frame of CA-theory. Such are e.g. some concepts of abstract model theory (cf. [1] and [10]–[12]) as well as ideas about relationships between several axiomatic theories of different similarity types (cf. [4] and [10]). In contrast with the relationship between Boolean algebras and classical propositional logic, CA's correspond not only to classical first order logic but also to several other ones. Hence CA-theoretic results contain more information than their counterparts in first order logic. For more about this see [1], [3], [5], [9], [10] and [12].Here we shall use the notation and concepts of the monographs Henkin-Monk-Tarski [7] and [8]. ω denotes the set of natural numbers. CAα denotes the class of all cylindric algebras of dimension α; by “a CAα” we shall understand an element of the class CAα. The class Dcα ⊆ CAα was defined in [7]. Note that Dcα = 0 for α ∈ ω. The classes Wsα, and Csα were defined in 1.1.1 of [8], p. 4. They are called the classes of all weak cylindric set algebras, regular cylindric set algebras and cylindric set algebras respectively. It is proved in [8] (I.7.13, I.1.9) that ⊆ CAα. (These inclusions are proper by 7.3.7, 1.4.3 and 1.5.3 of [8].)It was proved in 2.3.22 and 2.3.23 of [7] that every simple, finitely generated Dcα is generated by a single element. This is the algebraic counterpart of a property of first order logics (cf. 2.3.23 of [7]). The question arose: for which simple CAα's does “finitely generated” imply “generated by a single element” (see p. 291 and Problem 2.3 in [7]). In terms of abstract model theory this amounts to asking the question: For which logics does the property described in 2.3.23 of [7] hold? This property is roughly the following. In any maximal theory any finite set of concepts is definable in terms of a single concept. The connection with CA-theory is that maximal theories correspond to simple CA's (the elements of which are the concepts of the original logic) and definability corresponds to generation.


Author(s):  
Mai Gehrke ◽  
Tomáš Jakl ◽  
Luca Reggio

AbstractA systematic theory of structural limits for finite models has been developed by Nešetřil and Ossona de Mendez. It is based on the insight that the collection of finite structures can be embedded, via a map they call the Stone pairing, in a space of measures, where the desired limits can be computed. We show that a closely related but finer grained space of measures arises — via Stone-Priestley duality and the notion of types from model theory — by enriching the expressive power of first-order logic with certain “probabilistic operators”. We provide a sound and complete calculus for this extended logic and expose the functorial nature of this construction.The consequences are two-fold. On the one hand, we identify the logical gist of the theory of structural limits. On the other hand, our construction shows that the duality-theoretic variant of the Stone pairing captures the adding of a layer of quantifiers, thus making a strong link to recent work on semiring quantifiers in logic on words. In the process, we identify the model theoretic notion of types as the unifying concept behind this link. These results contribute to bridging the strands of logic in computer science which focus on semantics and on more algorithmic and complexity related areas, respectively.


Sign in / Sign up

Export Citation Format

Share Document