finite model property
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
pp. 23-30
Author(s):  
Stefano Aguzzoli ◽  
Matteo Bianchi

2021 ◽  
Vol 335 ◽  
pp. 129-138
Author(s):  
Hans van Ditmarsch ◽  
Tim French ◽  
Rustam Galimullin

2021 ◽  
Vol 18 (4) ◽  
Author(s):  
Rob Goldblatt

Ken Pledger devised a one-sorted approach to the incidence relation of plane geometries, using structures that also support models of propositional modal logic. He introduced a modal system 12g that is valid in one-sorted projective planes, proved that it has finitely many non-equivalent modalities, and identified all possible modality patterns of its extensions. One of these extensions 8f is valid in elliptic planes. These results were presented in his 1980 doctoral dissertation, which is reprinted in this issue of the Australasian Journal of Logic. Here we show that 12g and 8f are strongly complete for validity in their intended one-sorted geometrical interpretations, and have the finite model property. The proofs apply standard technology of modal logic (canonical models, filtrations) together with a step-by-step procedure introduced by Yde Venema for constructing two-sorted projective planes.


2021 ◽  
Vol 179 (3) ◽  
pp. 239-274
Author(s):  
Zhe Lin ◽  
Mihir Kumar Chakraborty ◽  
Minghui Ma

Varieties of topological quasi-Boolean algebras in the vicinity of pre-rough algebras [28, 29] are expanded to residuated algebraic structures by introducing a new implication operation and its residual in these structures. Sequent calculi for some classes of residuated algebraic structures are established. These sequent calculi have the strong finite model property which yields the decidability of the word problem for corresponding classes of algebraic structures.


Author(s):  
Julia Ilin ◽  
Dick de Jongh ◽  
Fan Yang

Abstract NNIL-formulas, introduced by Visser in 1983–1984 in a study of $\varSigma _1$-subsitutions in Heyting arithmetic, are intuitionistic propositional formulas that do not allow nesting of implication to the left. The first results about these formulas were obtained in a paper of 1995 by Visser et al. In particular, it was shown that NNIL-formulas are exactly the formulas preserved under taking submodels of Kripke models. Recently, Bezhanishvili and de Jongh observed that NNIL-formulas are also reflected by the colour-preserving monotonic maps of Kripke models. In the present paper, we first show how this observation leads to the conclusion that NNIL-formulas are preserved by arbitrary substructures not necessarily satisfying the topo-subframe condition. Then, we apply it to construct universal models for NNIL. It follows from the properties of these universal models that NNIL-formulas are also exactly the formulas that are reflected by colour-preserving monotonic maps. By using the method developed in constructing the universal models, we give a new direct proof that the logics axiomatized by NNIL-axioms have the finite model property.


Author(s):  
Mitio Takano

A modified subformula property for the modal logic KD with the additional axiom $\Box\Diamond(A\vee B)\supset\Box\Diamond A\vee\Box\Diamond B$ is shown. A new modification of the notion of subformula is proposed for this purpose. This modification forms a natural extension of our former one on which modified subformula property for the modal logics K5, K5D and S4.2 has been shown (Bull Sect Logic 30:115--122, 2001 and 48:19--28, 2019). The finite model property as well as decidability for the logic follows from this.


Author(s):  
Fei Liang ◽  
Zhe Lin

Implicative semi-lattices (also known as Brouwerian semi-lattices) are a generalization of Heyting algebras, and have been already well studied both from a logical and an algebraic perspective. In this paper, we consider the variety ISt of the expansions of implicative semi-lattices with tense modal operators, which are algebraic models of the disjunction-free fragment of intuitionistic tense logic. Using methods from algebraic proof theory, we show that the logic of tense implicative semi-lattices has the finite model property. Combining with the finite axiomatizability of the logic, it follows that the logic is decidable.


Sign in / Sign up

Export Citation Format

Share Document