The early stages of spontaneous forest regeneration on poor soils and continental sand dunes in northern Belgium

1983 ◽  
Vol 49 ◽  
Author(s):  
M. Van Miegroet

Spontaneous  natural regeneration under variable conditions on sandy soils and continental  sand dunes were analysed in 5 locations in N.E. Belgium.     The number of seedlings varies between 14.000 and 522.000/ha. The most  prominent invading species are red oak, pedunculate oak and Scots pine.    Two principal types of regeneration are recognized : homogeneous groups of  oak or pine and mixtures, predominantly composed by the same species.  Pioneers such as birch, willow, white poplar and wild black cherry do not  play an important role.    Social differentiation sets in quite early and is mainly provoked by age  differences. Therefore early silvicultural intervention is advisable. The  growth relationships between the species indicate that Scots pine is not in  danger of spontaneous elemination by other species. Because of the density  and variability of spontaneous forest regeneration, the conversion of pure  pine stands into mixed forest, using group regeneration to this end, poses no  real technical problems.

1992 ◽  
Vol 57 ◽  
Author(s):  
D. Maddelein ◽  
N. Lust

The  study of a seventy years old stand of Scots pine on drift sands proves that  Scots pine growth on these sites was and is still relatively good: average  diameter 27.6 cm, average height 19.4 m, standing volume 213 m3 and an annual increment  of 4.9 m3.ha-1.yr-1. All Scots pines  belong to the upper storey. Yet considerable differences in crown development  and vitality are observed. The current growth rate and the spontaneous  settlement of pine seedlings under canopy show the ideal conditions for the  creation of a high forest with reserves. Anyway a rotation period of more  than 70 years is recommendable.     On several places a consolidated regeneration of Scots pine seedlings under  canopy occur. Groups with a stem number of 700 to 3,500 seedlings per are, ranging  in age from 3 to 11 years and in height from 10 to 170 cm, are present. This  Scots pine regeneration has developed in a normal mor humus layer and in a  dense Deschampsia mat.      Broadleaved regeneration is not so abundant, and consists for 75 % of black  cherry. Absence of seed trees, browsing damage and the exclusive character of  black cherry are the limiting factors for the installation and survival of  valuable indigenous species, such as pedunculate oak.     Provided that black cherry is removed and that the regeneration is  protected against wild damage, it is possible to create a mixed forest  dominated by Scots pine but with a considerable admixture of indigenous  broadleaved trees. However, if black cherry will not be sufficiently  controlled, it can be expected that in a first phase black cherry will  dominate the understorey, that it will prevent the regeneration of all other  species and that, very soon, it will form an almost single-species dominated  stage in forest succession.


2019 ◽  
Vol 80 (3) ◽  
pp. 213-217
Author(s):  
Władysław Barzdajn ◽  
Wojciech Kowalkowski ◽  
Robert Tomczak

AbstractThe aim of this study was to evaluate the practical feasibility of two forest regeneration methods using Scots pine Pinus sylvestris L. To this end, comparative experiments were established in the Złotoryja and Legnica Forest Districts. The site in Złotoryja had been clear cut, while the experimental plot in Legnica was established at a location damaged by wind in 2009 and cleared from wind throws and wind-broken trees before the experiment. Four different dates for sowing and two for planting were chosen in order to investigate the potential forest regeneration with respect to time. Both experiments were established according to the same design: a complete random block design with five replication blocks. To each plot we applied approximately 53 g (1.2 kg/ha) of seeds and planted 230 seedlings (10 200 seedlings/ha). In 2017, the height of the pine trees was recorded and their increment in height was measured in 2016 as well as 2017. A preliminary analysis of results was conducted using ANOVA for multiple experiments in order to identify significant differences and to then combine variables to form homogeneous groups to which the Duncan multiple range test could be applied. For growth traits, the ANOVA showed significant differences between experimental sights as well as a significant interaction of factors with the experimental site. In terms of planting, April was the most advantageous resulting in the greatest tree height in both forest districts, while in the Legnica Forest District the saplings planted in April also showed the greatest annual increments. Among the sowing dates, the most advantageous was the winter sowing, while the April sowing date produced the least desirable results. In conclusion, both sowing and planting are effective methods to establish pine cultures in coniferous forest.Furthermore, both methods may be performed at the currently recommended spring date, but they may also be postponed to summer and winter dates provided favorable weather conditions prevail.


1988 ◽  
Vol 53 ◽  
Author(s):  
C. De Schepper

The  study describes the natural regeneration state of a forest on coarse sandy  soils. The natural regeneration was studied in three different ecological  conditions: in 30 to 60 year old Scots pine stands, in a 62 year old mixed  stand of pedunculate oak and red oak, and on the free field.     The analysis of the regeneration groups revealed that the first settler  maintained a dominant social position during the following years after the  settlement. The structural basis is consequently laid out early. This means  that the forest practice has to consider the very first phase of the  regeneration as determining for the following evolution of the regeneration  groups.


1987 ◽  
Vol 52 ◽  
Author(s):  
N. Lust

In 70  years old homogeneous Scots pine stands, bordered by a hardwood belt, an  analysis was made about the spontaneous ingrowth of natural seedlings. The  analysis involved especially the following points: species and stem number,  influence of the hardwood belts, diameter and height distribution, age,  growth and structure. From the age of 30 years, a spontaneous regeneration of  hardwoods established in Scots pine stands. There are on average 7,000 plants  per ha, 80 % of which are black cherry and another fair number are red oak  and pedunculate oak. The regeneration has an average age of 25 to 30 years,  it is uneven aged, contains several diameter and height classes and has  already partially penetrated the upper stratum.     The spontaneous ingrowth allows to convert in a simple way the homogeneous  coniferous stands into mixed hardwood stands.


2021 ◽  
Vol 481 ◽  
pp. 118615
Author(s):  
M. Bouwman ◽  
D.I. Forrester ◽  
J. den Ouden ◽  
G.-J. Nabuurs ◽  
G.M.J. Mohren

Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 495 ◽  
Author(s):  
Lars Drössler ◽  
Eric Agestam ◽  
Kamil Bielak ◽  
Małgorzata Dudzinska ◽  
Julia Koricheva ◽  
...  

Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocultures were located in an experimental set-up. Overyielding (where growth of a mixed stand was greater than the average of both monocultures) was relatively common and often ranged between 0% and 30%, but could also be negative at individual study sites. Each individual site demonstrated consistent patterns of the mixing effect over different measurement periods. Transgressive overyielding (where the mixed-species stand was more productive than either of the monocultures) was found at three study sites, while a monoculture was more productive on the other sites. Large variation between study sites indicated that the existing experiments do not fully represent the extensive region where this mixed pine-spruce forest can occur. Pooled increment data displayed a negative influence of latitude and stand age on the mixing effect of those tree species in forests younger than 70 years.


2018 ◽  
Vol 169 (6) ◽  
pp. 323-331
Author(s):  
Karl H. Mellert ◽  
Roberto Canullo ◽  
Tobias Mette ◽  
Daniel Ziche ◽  
Axel Göttlein

The climatic drought limit of common tree species depend on soil nutrient status In forest ecology, there is a huge experience in the ecological amplitude of tree species, which is commonly represented in so-called ecograms. However, the ecogram axes are purely qualitatively described and scaled. In the study presented here, we try to specify the drought limit in the ecogram for the ten most abundant and economically important tree species in Germany (Norway spruce, Scots pine, silver fir, European beech, pedunculate oak, sessile oak, sycamore maple, European elm, hornbeam and common ash) using generalized regression models. We use data on the occurrence of the tree species and on the soil of about 3300 plots of the second German forest soil condition survey (BZW II), combined with data from the ICP Forests Level I program (BioDiv and BioSoil) from 13 neighboring European countries as well as climate data from WorldClim. The focus is on the question to what extent the drought limit of the tree species depends on the soil nutrient status. As a predictor of nutrient status, we chose the base saturation type (BT) already introduced in practice. The warmth factor was included as Growing Degree Days, the water balance as climatic water balance in the forest vegetation period (KWB). The drought limit could be specified for all tree species except elm and pedunculate oak. It was found that not only in known nutrient-sensitive tree species (sycamore, ash, hornbeam), the drought limit depends on the BT, but also in beech and spruce. In the case of sycamore as an example of a nutrient-sensitive species, the dry climate limit on strongly acidic soils (BT 5) is already reached at a KWB of 20 l/m2, on base-rich (BT 1 and 0) only at a KWB of −150 l/m2. In beech, too, the drought limit on acidic soils has been reached more quickly than on base-rich sites (BT 5: −40 l/m2, BT 0: −120 l/m2). In contrast, the reaction of spruce is reversed (BT 5: −50 l/m2, BT 0: 10 l/m2). For pine, sessile oak and fir, the drought limit is independent of the base type and is −230 l/m2 (Scots pine), −150 l/m2 (sessile oak) and 0 l/m2 (silver fir). The drought limit specified by BT is a helpful quantity, especially in view of climate change, as it makes it possible to better estimate the potential of the different tree species.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1311
Author(s):  
Marek Wieruszewski ◽  
Katarzyna Mydlarz

This article starts a series of articles on dependences between the conditions of the growth of trees in forests and the technical aspects and directions of using the raw material obtained from these trees. This is a key feature for wood purchasers because it determines the efficiency of production and directly affects the final financial result of their activity. Wood represents an environmentally sustainable and renewable material, which is a widely available raw material on the market and must meet specific quality and strength requirements. These parameters indicate the utility values of wood and the possibilities of its use. One of the factors influencing the properties of wood is the type of the forest habitat it comes from. In order to determine this influence, tests were carried out to show how tree growth conditions affected changes in the density and strength of raw wood. The assumption (hypothesis) about the correlation between the static bending strength of Scots pine (Pinus sylvestris L.) wood and the forest habitat was verified on four forest types, i.e., fresh coniferous forest (FCF), fresh mixed coniferous forest (FMCF), fresh mixed forest (FMF) and fresh forest (FF). The properties depend largely on the wood structure, its origin on the cross section and the length of the stems. The raw material selected for the study came from Scots pine trees growing in forests in central Poland. The study confirmed the influence of the habitat on changes in the density and strength of pinewood. There was a correlation between the habitat FMCF and the quality parameters of the raw material, which reflected the wood structure r = 0.775; p < 0.05.


Sign in / Sign up

Export Citation Format

Share Document